%! TEX root = PM.tex % vim: tw=50 % 16/11/2023 10AM \subsubsection*{Facts} \begin{enumerate}[(1)] \item $\normp\|f \conv \gt\|_1 \le \normp\|f\|_1$. \item $f \conv \gt$ is continuous. \item $f \conv \gt$ is bounded. \item $\ft{f \conv \gt}(w) = \ft{f}(u) \ft{\gt}(u) = \ft{f}(u) e^{-\frac{t|u|^2}{2}}$. \item $\ft{f \conv \gt}$ is bounded continuous. \item $\normp\|\ft{f \conv \gt}\|_1 \le c_t \normp\|\ft{f}\|_\infty \le c_t \normp\|f\|_1$. \item For $\mu$ a probability measure, and any $t > 0$, $\mu \conv \gt$ is a \gls{gconv}. Note that \[ \mu \conv \gt = \mu \conv (\gt[\frac{t}{2}] \conv \gt[\frac{t}{2}]) = \ub{(\mu \conv \gt[\frac{t}{2}])}_{\in \Lp[1]} \conv \gt[\frac{t}{2}] .\] \end{enumerate} \begin{flashcard}[FI-for-gconv-lemma] \begin{lemma*} \gls{FI} holds for \glspl{gconv}. \end{lemma*} \begin{proof} \cloze{Let $f \in \Lp[1]$, $t > 0$. Then \begin{align*} (2\pi)^d f \conv \gt(x) &= (2\pi)^d \int f(x - y) \gt(y) \dd y \\ &= \int f9x -y ) \cdot (2\pi)^d \gt(y) \dd y \\ &= \int f(x - y) \int \ft{\gt}(u) e^{-i\langle u, y\rangle} \dd u \dd y &&\text{(\gls{FI})} \\ &= \iint f(x - y) \ft{\gt}(u) e^{-i\langle u, y\rangle} \dd u \dd y \\ &= \int \ft{\gt}(u) \left( \int f(x - y) e^{-\langle u, y \rangle} \dd y \right) \dd u &&\text{(\nameref{fubini_tonelli})} \\ &= \int \ft{\gt}(u) \left( \int f(y) e^{-i\langle u, x - y\rangle} \dd y \right) \dd u \\ &= \int \ft{\gt}(u) e^{-i\langle u, x\rangle} \left( \int f(y) e^{i\langle u, y\rangle} \dd y\right)\dd u \\ &= \int \ft{\gt}(u) e^{-i\langle u, x\rangle} \ft{f}(u) \dd u \\ &= \int \ft{\gt}(u) \ft{f}(u) e^{-\langle u, x\rangle} \dd u \\ &= \ft{f \conv \gt}(u) e^{-i\langle u, x\rangle} \dd u \qedhere \end{align*} } \end{proof} \end{flashcard} $f \conv \gt$ as $t \to 0$, $f \conv \gt$ ``$\to$'' $f \conv \delta_0 = f$. \begin{flashcard}[gaussian-converge-to-delta-lemma] \begin{lemma*} Let $f \in \Lp(\RR^d)$, $1 \le p < \infty$. Then $\cloze{\normp\|f \conv \gt - f\|_p} \to 0$ as $t \to 0$. \end{lemma*} \begin{proof} \cloze{Given $\eps > 0$, there exists $h \in C_c(\RR^d)$ (continuous functions with compact support), such that $\normp\|f - h\|_p \le \frac{\eps}{3}$. Then by linearity of $\conv$, \[ \normp\|f \conv \gt - h \conv \gt\|_p = \normp\|\ub{(f - h)}_{\in \Lp} \conv \gt\|_p \le \normp\|f - h\|_p \le \frac{\eps}{3} .\] So by \nameref{minkowski_ineq}, \begin{align*} \normp\|f \conv \gt - f\|_p &\le \ub{\normp\|f \conv \gt - h \conv \gt\|_p}_{\le \frac{\eps}{3}} + \ub{\normp\|f - h\|_p}_{\le \frac{\eps}{3}} + \normp\|h \conv \gt - h\|_p \\ &\le 2 \frac{\eps}{3} + \normp\|h \conv \gt - h\|_p \end{align*} So it is enough to prove that $\normp\|h \conv \gt - h\|_p \to 0$. So $h$ is bounded and $h$ is supported on $[-M, M]^d$ say, for some $M > 0$. Define \[ e(y) = \int |h(x - y) - h(x)|^p \dd x .\] Then as $y \to 0$, $|h(x - y) - h(x)|^p \to 0$ as $h$ is continuous. Also, \[ |h(x - y) - h(x)|^p \le 2^p \normp\|h\|_\infty^p \indicator{|x| \le M + 1} \] for $|y| < 1$. Hence, by \nameref{dct}, $e(y) \to 0$ as $y \to 0$. Also, \begin{align*} \normp\|h \conv \gt - h\|_p^p &= \int \left| \int h(x - y) \gt(y) \dd y - \int h(x) \gt (y) \dd y \right|^p \dd x \\ &= \int \left| \int (h(x - y) - h(x)) \gt(y) \dd y \right|^p \dd x \\ &\le \iint |h(x - y) - h(x)|^p \gt(y) \dd y \dd x &&\text{($p \ge 1$, \nameref{jensens_ineq})} \\ &= \int \left( \int |h(x - y) - h(x)|^p \dd x \right) \gt(y) \dd y &&\text{(\nameref{fubini_tonelli})} \\ &= \int e(y) \gt(y) \dd y \\ &= \int e(y) \frac{1}{t^{d / 2}} \gt[1] \left( \frac{y}{\sqrt{t}}\right) \dd y \\ &= \int e(\sqrt{t} y) \gt[1](y) \dd y \\ &\to 0 &&\text{(\nameref{dct})} \end{align*} ($e$ is bounded so $e(\sqrt{t} y) \gt[1] \le C\gt[1]$).} \end{proof} \end{flashcard} \begin{flashcard}[FI-formula-thm] \begin{theorem*}[Fourier Inversion] Let $f \in \Lp[1](\RR^d)$ and $\ft{f} \in \Lp[1](\RR^d)$. Then \[ f(x) = \frac{1}{(2\pi)^d} \int e^{-i\langle u, x\rangle} \ft{f}(u) \dd u \] \gls{al_ev} in $\RR^d$. \end{theorem*} \begin{proof} \cloze{ Consider $f \conv \gt$ and \[ f_t(x) = \frac{1}{(2\pi)^d} \int e^{-i\langle x, u\rangle} \ub{\ft{f}(u) \ub{e^{-\frac{t|u|^2}{2}}}_{\ft{\gt}(u)}}_{\ft{f \conv \gt}(u)} \dd u . \label{lec19_l144_eq} \tag{$*$} \] As \gls{FI} holds for $f \conv \gt$ ($f \conv \gt$ is a \gls{gconv}), we have $f \conv \gt = f_t$. So, $\normp\|f_t - f\|_1 \stackrel{t \to 0}{\longrightarrow} 0$, i.e. there exists a subsequence $t_n \downarrow 0$ such that $f_{t_n} \to f$ \gls{al_ev} (so $f_t \convP f$). But from \eqref{lec19_l144_eq}, as $t \to 0$, $e^{-i\langle x, u\rangle} \ft{f}(u) e^{-t \frac{|u|^2}{2}} \to e^{i\langle x, u\rangle} \ft{f}(u)$ and bounded by $|\ft{f}(u)|$ which is integrable. So by \nameref{dct}, \[ f_t(x) \stackrel{t \to 0}{\longrightarrow} \frac{1}{(2\pi)^d} \int e^{-i\langle x, u\rangle} \ft{f}(u) \dd u \] \gls{al_ev}. Hence \[ f = \frac{1}{(2\pi)^d} \int e^{-i\langle x, u\rangle} \ft{f}(u) \dd u \] \gls{al_ev}.} \end{proof} \end{flashcard} \begin{theorem*}[Plancherel] For $f, g \in \Lp[1] \cap \Lp[2](\RR^d)$, \[ \normp\|f\|_2 = \frac{1}{(2\pi)^{d/2}} \normp\|\ft{f}\|_2 \qquad \text{and} \qquad \langle f, g \rangle_2 = \frac{1}{(2\pi)^{\frac{d}{2}}} \langle \ft{f}, \ft{g} \rangle .\] $f \mapsto \ft{f}$. \end{theorem*} \begin{remark*} Since $\Lp[1] \cap \Lp[2]$ is dense in $\Lp[2]$, the linear operator \begin{align*} F_0 : \Lp[1] \cap \Lp[2] &\to \Lp[2] \\ F_0(f) &= (2\pi)^{-\frac{d}{2}} \ft{f} \end{align*} extends to an isometry $F : \Lp[2] \to \Lp[2]$, which is an isometry by Fourier inversion formula. \end{remark*}