%! TEX root = PM.tex % vim: tw=50 % 14/11/2023 10AM \begin{flashcard}[fourier-inversion-defn] \begin{definition*} \glsnoundefn{FI}{Fourier Inversion}{N/A} \cloze{For $f \in \Lp[1](\RR^d)$, with $\ft{f} \in \Lp[1](\RR^d)$, we say that the} \emph{Fourier Inversion} \cloze{holds for $f$ if \[ f(x) = \frac{1}{(2\pi)^d} \int_{\RR^d} \ft{f}(u) e^{-i\langle u, x\rangle} \dd u \] \gls{al_ev} in $\RR^d$.} \end{definition*} \end{flashcard} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item The $\RHS$ is continuous by \nameref{dct}, so for $f$ continuous, the equality is everywhere. \item $f \mapsto \ft{f}$, $\Lp[1] \to C_0$ is $1-1$. (for $f, g \in \Lp[1]$ with $\ft{f} = \ft{g}$, then $f - g \in \Lp[1]$ and $\ft{f - g} = \ft{f} - \ft{g} = 0$. So by \gls{FI}, $f - g = 0$ \gls{al_ev}). \end{enumerate} \end{remark*} \vspace{-1em} A key concept in Fourier analysis is \emph{convolution}. \begin{flashcard}[convolution-defn] \begin{definition*}[Convolution] \glssymboldefn{fourier_convolution}{$*$}{$*$} \glsnoundefn{fconv}{convolution}{convolutions} \cloze{For $f \in \Lp(\RR^d)$, $1 \le p < \infty$, and $\nu$ a probability measure,} \[ f * \nu(x) = \cloze{\begin{cases} \int_{\RR^d} f(x - y) \nu (\dd y) & \text{if the integral exists} \\ 0 & \text{otherwise} \end{cases} \qquad x \in \RR^d} \] \end{definition*} \end{flashcard} \vspace{-1em} \begin{align*} \int |f \conv \nu(x)|^p \dd x &\le \int \left( \int |f(x - y)| \nu(\dd y) \right)^p \dd x \\ &\le \iint |f(x - y)|^p \nu(\dd y) \dd x &&\text{(as $p \ge 1$, use \nameref{jensens_ineq})} \\ &= \int \left( \int |f(x - y)^p| \dd x \right)\nu(\dd y) &&\text{(\nameref{fubini_tonelli})} \\ &= \int \left( \int |f(x)|^p \dd x \right) \nu(\dd y) &&\text{($\lambda$ is translation invariant)} \\ &= \normp\|f\|_p^p \\ &< \infty \end{align*} Hence $f \conv \nu$ is defined \gls{al_ev}, and $\normp\|f \conv \nu\|_p \le \|f\|_p < \infty$. When $\nu$ has pdf $g \in \Lp[1]$, \[ f \conv \nu(x) = \int f(x - y) g(y) \dd y = f \conv g(x) .\] For 2 probability measures $\mu, \nu$ on $\RR^d$, the \gls{fconv} $\mu \conv \nu$ is a new probability measure defined as \[ \mu \conv \nu(A) = \iint \indicator{A}(x + y) \mu(\dd x) \nu(\dd y) = \mu \pmeas \nu(x + y \in A) = \PP(X + Y \in A) .\] where $X, Y$ are independent, $X \sim \mu$, $Y \sim \nu$. In other words, $(X + Y) \sim \mu \conv \nu$. If $\mu$ has pdf $f \in \Lp[1]$, then \begin{align*} \mu \conv \nu(A) &= \int \left( \int \indicator{A}(x + y) f(x) \dd x \right)\nu(\dd y) \\ &= \int \left( \int \indicator{A}(x) f(x - y) \dd x \right)\nu(\dd y) &&\text{(translation invariance)} \\ &= \int \indicator{A}(x) \left( \int \ob{f(x - y) \nu(\dd y)}^{f \conv \nu(x)} \right) \dd x &&\text{(\nameref{fubini_tonelli})} \\ &= \int \indicator{A} f \conv \nu(x) \dd x \end{align*} So, $\mu \conv \nu$ has the pdf $f \conv \nu$. Easy to check: \begin{enumerate}[(1)] \item $\ft{f \conv \nu}(u) = \ft{f}(u) \ft{\nu} (u)$ for all $f \in \Lp[1]$, $\nu$ a probability measure. \item $\ft{\mu \conv \nu}(u) = \ft{u}(u) \cdot \ft{\nu}(u)$ for all $\mu, \nu$ probability measures. $X, Y$ independent, $X \sim \mu$, $Y \sim \nu$, then $X + Y \sim \nu \conv \mu$, then \[ \ft{\mu \conv \nu} = \EE e^{i\langle u, X + Y\rangle} \stackrel{\text{ind}}{=} \EE e^{i\langle u, X\rangle} \cdot \EE e^{i\langle u, Y \rangle} = \ft{\mu}(u) \ft{\nu}(u) .\] \end{enumerate} \subsubsection*{Fourier transform of Gaussians} If $\phi_z$ is the \gls{char_func} of $Z \sim \normaldist(0, 1)$, i.e. \[ \phi_Z(u) = \EE e^{iuZ} = \int \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} e^{iuz} \dd z \] then by a previous theorem, $\phi_Z$ is differentiable and can be differentiated under the integral sign, i.e. \begin{align*} \frac{\dd}{\dd u} \phi_Z(u) &= \frac{1}{\sqrt{2\pi}} \int \frac{\dd}{\dd u} (e^{-\frac{z^2}{2}} e^{iuz}) \dd z \\ &= \frac{1}{\sqrt{2\pi}} \int iz e^{iuz} e^{-\frac{z^2}{2}} \dd z \\ &= \frac{i}{\sqrt{2\pi}} \int e^{iuz} (ze^{-\frac{z^2}{2}}) \dd z \\ &= \frac{i}{\sqrt{2\pi}} \int iu e^{iuz} e^{-\frac{z^2}{2}} \dd z &&\text{(integration by parts)} \\ &= -u \int e^{iuz} \frac{e^{-\frac{z^2}{2}}}{\sqrt{2\pi}} \dd z \\ &= -u\phi_Z(u) \label{lec18_l136_eq} \tag{$*$} \end{align*} Hence, \[ \frac{\dd}{\dd u}(e^{\frac{u^2}{2}} \phi_Z(u)) = e^{\frac{u^2}{2}} \phi_Z'(u) + \phi_Z(u) u e^{\frac{u^2}{2}} \stackrel{\text{\eqref{lec18_l136_eq}}}{=} 0 .\] i.e. $e^{\frac{u^2}{2}} \phi_Z(u) = \phi_Z(0) = 1$, so $\phi_Z(u) = e^{-\frac{u^2}{2}}$. Consider for $t \in (0, \infty)$, the centered Gaussian random variable on $\RR^d$ which has pdf $g_t$ (with respect to $\lambda^d$), \[ g_t(x) = \frac{1}{(2\pi t)^{d/2}} e^{-\frac{\|x\|^2}{2t}}, \qquad \|x\|^2 = \sum_{i = 1}^d x_i^2 .\] So, if $(Z_1, \ldots, Z_d)$ are IID $\normaldist(0, 1)$, then $\sqrt{t}Z$ has density $g$. So, \begin{align*} \ft{g_t}(y) &= \EE(e^{i\langle u, \sqrt{t} z \rangle}) \\ &= \EE \left( e^{i\sum_{i = 1}^d u_i \sqrt{t} z_i} \right) \\ &= \EE \left( \prod_{i = 1}^d e^{iu_i \sqrt{t} z_i} \right) \\ &= \prod_{i = 1}^d \EE (e^{iu_i \sqrt{t} z_i}) &&\text{($z_i$ independent)} \\ &= \prod_{i = 1}^d \phi_Z(\sqrt{t}u_i) \\ &= \prod_{i = 1}^d e^{-t \frac{u_i^2}{2}} \\ &= e^{-\frac{t\|u\|^2}{2}} \end{align*} Hence, \[ \ft{g_t}(y) = e^{-t\|u\|^2/2} = \frac{(2\pi)^{d/2}}{t^{d/2}} = \left( \frac{t}{2\pi} \right)^{d/2} e^{-t\|u\|^2/2} = \frac{(2\pi)^{d/2}}{t^{d/2}} g_{1/t}(u) .\] So, \[ \ft{\ft{g_t}}(u) = \frac{(2\pi)^{d/2}}{t^{d/2}} \ft{g_{1/t}}(u) = (2\pi)^d g_t(u) .\] Then \[ g_t(x) = g_t(-x) = (2\pi)^{-d} \ft{\ft{g_t}}(-x) = (2\pi)^{-d} \int \ft{g_t}(u) e^{-i\langle u, x\rangle} \dd u .\] Thus the \gls{FI} holds for $g_t$. \begin{flashcard}[gaussian-conv-defn] \begin{definition*}[Gaussian convolution] \glssymboldefn{gt}{$g_t$}{$g_t$} \glsnoundefn{gconv}{Gaussian convolution}{Gaussian convolutions} \cloze{ For $f \in \Lp[1](\RR^d)$, the \emph{Gaussian convolution} of $f$ is $f \conv g_t$ where \[ g_t(u) = \frac{1}{(2\pi)^{\frac{d}{2}}} e^{-\frac{|u|^2}{2t}} .\]} \end{definition*} \end{flashcard} % $f \conv g_t$ where $f \in \Lp[1]$. % \[ f \conv g_t(x) = \int f(x - y) g_t(y) \dd y % \qquad \forall x \in \RR^d, f \in \Lp[1], t > 0 .\] % Hence, $f \conv g_t \in \Lp[1]$ and $\normp\|f % \conv g_t\|_1 \le \normp\|f\|_1 < \infty$. $f % \conv g_t$ is continuous since % \[ f \conv g_t(x) = \int f(y) g_t(x - y) \dd y \] % (by translation invariance of $\lambda$), hence % continuout by \nameref{dct}, since $g_t$ is % continuous.