%! TEX root = PM.tex % vim: tw=50 % 11/11/2023 10AM Recall for a collection $\chi$ of random variables, $\chi$ is \gls{ui} if \begin{enumerate}[(1)] \item $\chi$ is $\Lp[1]$ bounded \item $I_{\chi}(\delta) = \sup_{X \in \chi} \{\EE(|X|\indicator{A}) : A \in \mathcal{F}, \PP(A) \le \delta\} \downarrow 0$ as $\delta \downarrow 0$. \end{enumerate} \begin{flashcard}[alt-def-of-ui-lemma] \begin{lemma*}[Alternative definition of \gls{ui}] \cloze{ $\chi$ is \gls{ui} if and only if \[ \sup_{X \in \chi} \EE (|X| \indicator{(|X| \ge K)}) \to 0 \] as $K \to \infty$. } \end{lemma*} \begin{proof} \phantom{} \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] \cloze{Fix any $\eps > 0$. Then $\exists \delta > 0$ such that $I_{\chi}(\delta) < \eps$ (as $\chi$ is \gls{ui}). Choose $K < \infty$ such that \[ \frac{I_\chi(1)}{\delta} = \frac{\sup_{X \in \chi} \EE|X|}{\delta} \le K .\] Then for any $X \in \chi$, \[ \PP(|X| \ge K) \stackrel{\text{Markov}}{\le} \frac{\EE|X|}{K} \le \frac{I_\chi(1)}{K} \le \delta .\] So, with $A = \{|X| \ge K\}$, \[ \EE(|X|\indicator{|X| \ge K}) \le I_\chi(\delta) < \eps .\]} \item[$\Leftarrow$] \cloze{\[ \EE|X| = \EE|X|\indicator{(|X| \ge K)} + \EE\ub{|X|\indicator{(|X| \le K)}}_{\le K} \] So, \[ \sup_{X \in \chi} \EE|X| \le K + \sup_{X \in \chi} \EE|X|\indicator{(|X| \le K)} \] Choose $K$ large so that the second term on the $\RHS$ is $\le 1$. Then $\chi$ is $\Lp[1]$ bounded. Fix any $\eps > 0$. Choose $K$ so that $\EE(|X|\indicator{|X| \ge K}) < \eps/2$ for all $X \in \chi$. Then choose $\delta > 0$ such that $\delta \le \frac{\eps}{2K}$. Then $\forall X \in \mathcal{X}$ and $A \in \mathcal{F}$ with $\PP(A) \le \delta$, \begin{align*} \EE(|X| \indicator{A}) &= \EE(|X|\indicator{A} \indicator{|X| \ge K}) + \EE(|X|\indicator{A} \indicator{|X| \le K}) \\ &\le \ub{\EE(|X| \indicator{|X| \ge K})}_{< \eps} + \ub{K\PP(A)}_{\le K\delta \le \eps/2} \\ &\le \eps \qedhere \end{align*} } \end{enumerate} \end{proof} \end{flashcard} \begin{theorem*} Let $(X_n)$, $X$ be random variables on $(\Omega, \mathcal{F}, \PP)$. Then the following are equivalent: \begin{enumerate}[(a)] \item $X, X_n \in \Lp[1]$ for all $n$ and $X_n \stackrel{\Lp[1]}{\longrightarrow} X$. \item $\chi = (X_n : n \in \NN)$ is \gls{ui} and $X_n \convP X$. \end{enumerate} \end{theorem*} \begin{proof} \phantom{} \begin{enumerate}[(a) $\implies$ (b)] \item[(a) $\implies$ (b)] By Markov, \[ \PP(|X_n - X| > \eps) \le \frac{\EE|X_n - X|)}{\eps} \to 0 \] as $n \to \infty$, so $X_n \convP X$. Choose $N$ such that $\EE|X_n - X| < \frac{\eps}{2}$ for all $n \ge N$. Choose $\delta$ so that $\EE|X|\indicator{A} \le \frac{\eps}{2}$ whenever $\PP(A) < \delta$. \[ \EE|X_n| \indicator{A} \le \ub{\EE|X_n - X|}_{\le \delta/2} + \ub{\EE|X|\indicator{A}}_{\le \eps/2} \le \eps \qquad \forall n \ge N .\] For all $n = 1, 2, \ldots, N - 1$, \[ \EE|X_n| \indicator{A} \le \eps \] by the choice of $\delta$. Hence $\chi$ is \gls{ui}. \item[(b) $\implies$ (a)] $X_n \convP X$. So take a subsequence $(n_k)$ such that $X_{n_k} \stackrel{\text{\gls{al_surely}}}{\longrightarrow} X$. Then \[ \EE|X| = \EE\liminf |X_{n_k}| \stackrel{\text{\nameref{fatous_lemma}}}{\le} \liminf \EE|X_{n_K}| \le \sup_{X_n \in \chi} \EE|X_n| < \infty .\] (as $\chi$ is \gls{ui}, hence $\Lp[1]$ bounded). So $X \in \Lp[1]$. Define the truncated random variables \begin{align*} X_n^K &= (-K) \vee X_n \wedge K \\ X^k (-k) \vee X \wedge K \end{align*} Then $X_n^K \convP X^K$ (as $\PP(|X_n^K - X^K| > \eps) \le \PP(|X_n - X| > \eps)$). Aside: If $X_n \convP X$ and $f$ is a continuous function, then $f(x_n) \convP f(x)$. Also $|X_n^K| \le K$ for all $n$. Hence by BCT, $X_n^K \stackrel{\Lp[1]}{\longrightarrow} X^k$. Now, \[ \EE|X_n - X| \le \EE\ob{|X_n - X_n^K|}^{\le |X_n|\indicator{(|X_n| \ge K)} ~~(1)} + \EE \ob{|X - X^K|}^{\le \EE|X|\indicator{(|X| \le K)} ~~(2)} + \EE|X_n^K - X^K| \le \eps \qquad \] for all $n \ge N$. By \gls{ui} choose $K$ large so that (1) and (2) are $\le \frac{\eps}{3}$. Then choose $N$ large so that the last term is $\le \frac{\eps}{3}$ for all $n \ge N$. \qedhere \end{enumerate} \end{proof} \newpage \section{Fourier Transforms} For $g$ measurable such that $\int |G| \dd x < \infty$, define \[ \int g(x) \mu (\dd x) = \int \Re(g(x)) \mu (\dd x) + i\int \Im(g(x)) \mu(\dd x) \] Here $\Lp = \Lp(\RR^d)$ is the space of \emph{complex valued} Borel measurable functions on $\RR^d$, i.e. $f : \RR^d \to \CC$ for which \[ \ub{\left( \int_{\RR^d} |f(x)|^p \mu(\dd x) \right)^{1/p}}_{= \normp\|f\|_p} < \infty \] for all $1 \le p < \infty$. and \[ \left| \int g(x) \mu (\dd x) \right| \le \int |g(x)| \mu(\dd x) \] (\es{3}). We also define for $f, g \in \Lp[2]$, \[ \langle f, g \rangle = \int f(x) \ol{g(x)} \dd \mu(x) \] which is an inner product on $\Lp[2](\mu)$. For any $y \in \RR^d$, \begin{align*} \int f(x - y) \dd x &= \int f(y - x) \dd x - \int f(x) \dd x \\ &= \int f(-x) \dd x \end{align*} (translation invariance and $x \mapsto -x$ symmetry of $\lambda$, see \es{3}). Also for $a \in \RR$, $a \neq 0$, \[ \int f(ax) \dd x = \frac{1}{a^d} \int f(x) \dd x\] \begin{flashcard}[fourier-transform-defn] \begin{definition*}[Fourier Transform] \glsnoundefn{FT}{Fourier transform}{Fourier transforms} \glssymboldefn{finv}{FT of $f$}{FT of $f$} \cloze{The \emph{Fourier transform} $\hat{f}$ of $f \in \Lp[1](\RR^d)$ is defined as \[ \hat{f}(u) = \int_{\RR^d} f(x) e^{i\langle u, x\rangle} \dd x \] for all $u \in \RR^d$ and $\langle u, x \rangle = \sum_{i = 1}^d u_i x_i$.} \end{definition*} \end{flashcard} \vspace{-1em} For all $u \in \RR^d$, \[ \sup_u |\hat{f}(u)| \le \int |f(x)| \dd x = \normp\|f\|_1 < \infty \] i.e. $\hat{f} \in \Lp[\infty]$. Also, for $u_n \to u$, \[ f(x) e^{i\langle u_n, x \rangle} \to f(x) e^{i\langle u, x \rangle} \] and $|f(x) e^{i\langle u_n, x \rangle}| \le |f(x)|$ and $f \in \Lp[1]$, so by \nameref{dct}, $\hat{f}(u_n) \to \hat{f}(u)$. Moreover, \[ \lim_{\|u\| \to \infty} \hat{f}(u) = 0 \] (Riemann-Lebesgue Lemma, \es{3}). Thus \[ \hat{f} \in C_0(\RR^d) = \{\text{$f$ bounded continuous vanishing at $\infty$}\} \] The map is $1-1$ (but not onto). For a finite / probability measure $\mu$ on $\RR^d$, define similarly, \[ \hat{\mu}(u) = \int e^{i\langle u x\rangle} \dd \mu(x) \qquad u \in \RR^d \] Then $\hat{\mu}$ is a bounded continuous function on $\RR^d$ and $|\hat{\mu}(u)| \le \mu(\RR^d) < \infty$. If $\mu$ has density $f$ (with respect to $\lambda$), then \[ \hat{\mu}(u) = \int e^{i\langle u, x\rangle} f(x) \dd x = \hat{f}(u) .\] \begin{flashcard}[char-func-defn] \begin{definition*}[Characteristic function] \glsnoundefn{char_func}{characteristic function}{characteristic functions} \glssymboldefn{cf}{$\phi$}{$\phi$} \cloze{The \emph{characteristic function} (c.f.) $\phi_X$ of a random variable $X$ on $\RR^d$ is the \gls{FT} of its law $\mu_X = \PP \circ X^{-1}$. So \[ \phi_X(u) = \hat{\mu}_X(u) = \int e^{i\langle u, x\rangle} \dd \mu_X(x) = \int e^{i\langle u, x \rangle} \dd\PP = \EE e^{i\langle u, X\rangle} \] ($\nu \circ f^{-1}(g) = \nu(f \circ g)$). In particular if $X$ has pdf $f$, then $\phi_X(u) = \hat{f}(u)$.} \end{definition*} \end{flashcard}