%! TEX root = PM.tex % vim: tw=50 % 09/11/2023 10AM \begin{flashcard}[orthogonal-projection-thm] \begin{theorem*}[Orthogonal projection] \cloze{ If $V$ is a \emph{closed subspace} of $\Lp[2]$, then $\forall f \in \Lp[2]$, $f = v + u$ where $v \in V$, $u \in V^\perp$. Moreover, $\normp\|f - v\|_2 \le \normp\|f - g\|_2$ for all $g \in V$ with equality if and only if $g = v$ \gls{al_ev}. In particular, $v$ is unique (\gls{al_ev}) and is called the orthogonal projection of $f$ on $V$.} \end{theorem*} \fcscrap{ \begin{center} \includegraphics[width=0.6\linewidth]{images/bc3f3d3aa0fa4d56.png} \end{center} } \begin{proof} \cloze{Define $d(f, V) = \inf_{g \in V} \normp\|f - g\|_2$. Let $(g_n) \in V$ be a sequence such that $\normp\|f - g_n\|_2 \to d(f, V)$. Now by parallelogram law, \[ 2(\normp\|f - g_n\|_2^2 + \normp\|f - g_m\|_2^2) = \normp\|g_n - g_m\|_2^2 + \ub{4 \left\| f - \frac{g_n + g_m}{2} \right\|^2}_{\ge 4d(f, V)^2} \] so by taking $\lim_{n, m \to \infty}$, we deduce that $\normp\|g_n - g_m\|_2^2 \to 0$, i.e. $(g_n)$ is Cauchy. As $\Lp[2]$ is complete and $V$ is closed, $g_n \stackrel{\Lp[2]}{\longrightarrow} v \in V$. Then $\normp\|f - g_n\|_2^2 \to \normp\|f - v\|_2^2$ hence $\normp\|f - v\|_2^2 = d(f, V)^2$, i.e. $d(f, V) = \normp\|f - v\|_2$. Then for any $h \in V$, $t \in \RR$, \[ \label{lec16_l40_eq} d(f, v)^2 \le \normp\|f - (v + th)\|_2^2 = d(f, v)^2 - 2t \langle f - v, h \rangle + t^2 \normp\|h\|_2^2 \tag{$*$} \] Letting $t \downarrow 0$ and $t \uparrow 0$, $\langle f - v, h \rangle = 0$, hence $f - v \in V^\perp$. Now \[ f = \ub{v}_{\in V} + \ub{f - v}_{\in V^\perp} \] as desired. For any $g \in V$, \[ f - g = \ub{f - v}_{\in V^\perp} + \ub{v - g}_{\in V} \] and \[ \normp\|f - g\|_2^2 = \normp\|f - v\|_2^2 + \normp\|v - g\|_2^2 \] Hence $\normp\|f - g\|_2 \ge \normp\|f - v\|_2$ with equality if and only if $\normp\|v - g\|_2 = 0$, i.e. $v = g$ \gls{al_ev}.} \end{proof} \end{flashcard} $(\Omega, \mathcal{F}, \PP)$ and $X, Y \in \Lp[2](\Omega, \mathcal{F}, \PP)$ with $\EE X = \EE Y = 0$. Then $\Cov(X, Y) = \EE(X - \EE X)(Y - \EE Y) = \EE XY = \langle X, Y \rangle$. $\Var(X) = \Cov(X, X)$. If $X$ and $Y$ independent, $\langle X, Y \rangle = 0$, converse not true. If $\mathcal{G}$ is a sub-\sigalg{} of $\mathcal{F}$ (i.e. $\mathcal{G} \subseteq \mathcal{F}$), then $\Lp[2](\Omega, \mathcal{G}, \PP)$ is a closed subspace of $\Lp[2](\Omega, \mathcal{F}, \PP)$. For $X \in \Lp[2](\Omega, \mathcal{F}, \PP)$, (a variant of) the conditional expectation of $X$ given $\mathcal{G}$, $\EE(X \given \mathcal{G})$ is defined as the orthogonal projection of $X$ on $\Lp[2](\Omega, \mathcal{F}, \PP)$ ($X$ should be measurable with respect to $\mathcal{G}$ and $\normp\|X - Y\|_2 \ge \normp\|X - \EE(X \given \mathcal{G})\|_2$ for all $Y$ $\mathcal{G}$-measurable). \textbf{Question:} How to define $\EE(X \given \mathcal{G})$ is $X \in \Lp[1](\Omega, \mathcal{F}, \PP)$? (advanced probability). \textbf{Exercise:} Let $(G_i)_{i \in I}$ be a countable family of disjoint events whose union is $\Omega$ and set $\mathcal{G} = \sigma(G_i : i \in I)$. Let $X$ be integrable. Then the conditional expression of $X$ given $\mathcal{G}$ is given by \[ Y = \sum_i \EE(X \given G_i) \indicator{G_i}, \qquad \EE(X \given G_i) = \frac{\EE(x\indicator{G_i})}{\PP(G_i)} ~\forall i \in I \] Check: \begin{enumerate}[(1)] \item $Y$ is $\mathcal{G}$-measurable \item $Y \in \Lp[2](\Omega, \mathcal{F}, \PP)$ \item $Y$ is ``the'' orthogonal projection of $X$ onto $\Lp[2](\Omega, \mathcal{G}, \PP)$ if $X \in \Lp[2](\Omega, \mathcal{F}, \PP)$. \end{enumerate} \subsubsection*{$L^p$ Convergence and Uniform Integrability} $(\Omega, \mathcal{F}, \PP)$. \begin{center} \includegraphics[width=0.6\linewidth]{images/790f013e1a114061.png} \end{center} Explanations: $f_n = n\indicator{(0, 1/n)}$ on $((0, 1), \mathcal{B}, \lambda)$. Then $f_n \to 0$ \gls{al_surely}. But $\EE|f_n| = \EE f_n = 1 ~\forall n$, i.e. \gls{al_surely} $\nimplies$ $\Lp$ convergence. \[ \PP(|X_n - X| > \eps) \le \frac{\EE|X_n - X|^p}{\eps^p} \to 0 \] (Markov inequality). \begin{theorem*}[DCT] \label{dct} Let $(X_n)$ be such that $X_n \convP X$ and $|X_n| \le Y$ for all $n$, for some integrable random variable. Then $X_n \stackrel{\Lp[1]}{\to} X$, i.e. $\EE|X_n - X| \to 0$ as $n \to \infty$. \end{theorem*} \vspace{-1em} \textbf{Question:} What is the ``minimum condition'' on $(X_n)$ under which $X_n \convP X$ implies $X_n \stackrel{\Lp[1]}{\longrightarrow} X$? $\implies \EE|X_n| \to \EE|X|$, ``Uniformly Integrable''. \begin{flashcard}[IXdelta] For $X \in \Lp[1](\PP)$ define \[ I_X(\delta) = \cloze{\sup\{\EE(|X|\indicator{A}) : A \in \mathcal{F}, \PP(A) \le \delta\}} \] \end{flashcard} Then $I_X(\delta) \to 0$ as $\delta \to 0$. (If not then $\exists \eps > 0$ and $(A_n) \in \mathcal{F}$ such that $\PP(A_n) \le 2^{-n}$ and $\EE|X|\indicator{A_n} \ge \eps$. Then $\sum \PP(A_n) < \infty$ so $\PP(A_n \text{ i.o.}) = 0$ by \nameref{borel_cantelli_1}. Then \[ \eps \le \EE|X| \indicator{A_n} \le \EE|X| \indicator{\bigcup_{m = n}^\infty A_m} \stackrel{\text{\nameref{dct}}}{\longrightarrow} 0 \] since \[ \indicator{\bigcup_{m = n}^\infty A_m} \to \indicator{\bigcap_m \bigcup_{m = n}^\infty A_m} = \indicator{\{A_n \text{ i.o.}\}} = 0 \text{ \gls{al_surely}} \] contradiction). \begin{flashcard}[uniformly-integrable-defn] \begin{definition*} \glsadjdefn{u_int}{uniformly integrable}{collection of random variables} \glsadjdefn[u_int]{ui}{UI}{collection of random variables} Let $\chi$ be a collection of random variables in $\Lp[1](\PP)$. Define \[ I_{\chi}(\delta) = \cloze{ \sup\{\EE(|X|\indicator{A}) : X \in \chi, A \in \mathcal{F}, \PP(A) \le \delta\}} \] We say $\chi$ is \emph{uniformly integrabl} (UI) if \begin{enumerate}[(1)] \item \cloze{$\chi$ is bounded in $\Lp[1]$ (i.e. $\sup_{X \in \chi} \normp\|X\|_1 = \sup_{X \in \chi} \EE|X| = I_{\chi} < \infty$)} \item \cloze{$I_{\chi}(\delta) \to 0$ as $\delta \to 0$.} \end{enumerate} \end{definition*} \end{flashcard} \begin{remark*} Note to reader: I didn't follow what the lecturer was writing in these remarks so they are probably nonsense, but if you rearrange things appropriately it should hopefully make sense (I've tried thinking about it for a bit but haven't figured it out). \begin{enumerate}[(1)] \item Any single integrable random variable is \gls{ui} (so does any finite collection of integrable random variables, also if \[\chi = \{X : \text{$X$ a random variable such that $|X| \le Y$ for some $Y \in \Lp[1]$}\}\]) Then $X$ is \gls{ui}, \[ I_{\chi}(\delta) \le I_Y(\delta) \to 0 \] as $\delta \to 0$. \item If $\chi$ is bounded in $\Lp$ for some $p > 1$ then \[ \sup \EE(X \indicator{A}) \stackrel{\text{\nameref{holder_ineq}}}{\le} \normp\|X\|_p (\PP(A))^{1/q} \le C\delta^{1/q} \] $X \in \chi$ such that $\PP(A) \le \delta$ i.e. $I_{\chi}(\delta) \le C \delta^{1/q} \to 0$ as $\delta \to 0$ for all $A$ such that $\PP(A) \le \delta$ as $\sup_{X \in \chi} \EE|X| \indicator{A} \le \EE Y\indicator{A}$. \item $\Lp[1]$ bounded $\nimplies$ \gls{ui}. \end{enumerate} \end{remark*}