%! TEX root = PM.tex % vim: tw=50 % 07/11/2023 10AM \begin{flashcard}[holder-ineq-thm] \begin{theorem*}[Holder Inequality] \label{holder_ineq} \cloze{ Let $f, g$ measurable and $1 \le p \le g \le \infty$ be conjugate, i.e. $\frac{1}{p} + \frac{1}{q} = 1$, then \[ \mu(|fg|) \le \normp\|f\|_p \normp\|g\|_q .\] } \end{theorem*} \begin{proof} \cloze{ If $p$ or $q = 1$ or $\infty$ then clear. So are the cases when $\normp\|f\|_p$ or $\normp\|g\|_q = 0$. Exclude these. Dividing both sides by $\normp\|f\|_p$, we may assume $\normp\|f\|_p = 1$, i.e. $\int |f|^p \dd \mu = 1$. So, define a probability measure $\PP$ on $\mathcal{E}$ by \[ \PP(A) = \int_A |f|^p \dd \mu \] ($\PP$ has probability density $|f|^p$ with respect to $\mu$). Also, for $h \ge 0$ measurable, \[ \label{lec15_l25_eq} \int h \dd\PP = \int h|f|^p \dd \mu \tag{$*$} \] Then, \begin{align*} \mu(|fg|) &= \mu(|fg| \indicator{\{|f| > 0\}}) \\ &= \int \frac{|f|^p |g|}{|f|^{p - 1}} \indicator{\{|f| > 0\}} \dd \mu \\ &= \int \frac{|g|}{|f|^{p - 1}} \indicator{\{|f| > 0\}} |f|^p \dd\mu \\ &= \int \frac{|g|}{|f|^{p - 1}} \indicator{\{|f| > 0\}} \dd\PP \\ &= \EE \left( \frac{|g|}{|f|^{p - 1}} \indicator{\{|f| > 0\}} \right) \\ &\le \left( \EE \left( \frac{|g|^q}{|f|^{q(p - 1)}} \indicator{|f| > 0} \right) \right)^{1/q} &&\text{(\nameref{jensens_ineq})} \\ &= \left( \int \left( \frac{|g|^q}{|g|^p} \indicator{\{|f| > 0\}} \right) \dd\PP \right)^{1/q} \\ &= \left( \int |g|^q \indicator{\{|f| > 0\}} \dd \mu \right)^{1/q} &&\text{(by \eqref{lec15_l25_eq})} \\ &\le \left( \int |g|^q \dd \mu \right)^{1/q} \\ &= \normp\|g\|_q &&\qedhere \end{align*} } \end{proof} \end{flashcard} \begin{remark*} $p = q = 2$ is the Cauchy-Schwarz inequality (see \es{3}). \end{remark*} \begin{flashcard}[minkowski-ineq-thm] \begin{theorem*}[Minkowski inequality] \label{minkowski_ineq} \cloze{ For $p \in [1, \infty]$ and $f, g$ measurable, $\normp\|f + g\|_p \le \normp\|f\|_p + \normp\|g\|_p$. } \end{theorem*} \begin{proof} \cloze{ $p = 1, \infty$ obvious. Also obvious when $\normp\|f\|_p$ or $\normp\|g\|_p = 0$ or $\normp\|f + g\|_p$. Assume otherwise. Since \[ |f + g|^p \le 2^p (|f|^p + |g|^p) \] we have \[ \mu(|f + g|^p) \le 2^p (\mu(|f|^p) + \mu(|g|^p)) < \infty \] if $f, g \in \Lp$. So $f + g \in \Lp$. With $q$ the conjugate of $p$, \begin{align*} \normp\|f + g\|_p^p &= \int |f + g|^p \dd \mu \\ &= \int |f + g| |f + g|^{p - 1} \dd \mu \\ &\le \int |f + g|^{p - 1} |f| \dd \mu + \int |f + g|^{p - 1} |g| \dd \mu \\ &\le \normp\|f\|_p \normp\|(f + g)^{p - 1}\|_q + \normp\|g\|_p \|(f + g)^{p - 1}\|_q &&\text{(\nameref{holder_ineq})} \\ &= \left( \int |f + g|^{\ob{(p - 1)q}^{=p}} \dd \mu \right)^{1 / q} (\normp\|f\|_p + \normp\|g\|_p) \\ &= \ub{\left( \int |f + g|^p \dd \mu \right)^{1 / q}}_{=\normp\|f + g\|_p^{p/q}} (\normp\|f\|_p + \normp\|g\|_p) \end{align*} Hence, dividing by $\normp\|f + g\|_p^{p/q}$, we get \[ \normp\|f + g\|_p \le \|f\|_p + \|g\|_p \qedhere \] } \end{proof} \end{flashcard} \begin{flashcard}[Lcurly-p-is-banach-space-thm] \begin{theorem*}[$\Lpcal$ is a complete normed vector space (Banach space)] Let $p \in [1, \infty]$. Let $(f_n)_{n \in \NN}$ be a sequence of functions in $\Lp$ such that \[ \forall \eps > 0 ~\exists N \in \NN ~\forall m, n \ge N \quad \normp\|f_m - f_n\|_p < \eps \] (i.e. $(f_n)$ is Cauchy in $\Lp$). Then $\exists$ $f \in \Lp$ such that $\normp\|f_n - f\|_p \to 0$ as $n \to \infty$. \end{theorem*} \begin{proof} \cloze{ Assume $1 \le p < \infty$ ($p = \infty$ is an exercise). Choose a subsequence $(n_k)$ such that $\normp\|f_{n_{k + 1}} - f_{n_k}\|_p \le 2^{-k}$. Then $S = \sum_{k = 1}^\infty \normp\|f_{n_{k + 1}} - f_{n_k}\|_p < \infty$. By \nameref{minkowski_ineq}, for any $K \in \NN$, \[ \left\| \sum_{k = 1}^K |f_{n_{k + 1}} - f_{n_k} \right\|_p \le \sum_{k = 1}^\infty \normp\|f_{n_{k + 1}} - f_{n_k}\|_p = S < \infty .\] So, \[ \int \left( \sum_{k = 1}^K |f_{n_{k + 1}} - f_{n_k}| \right)^p \dd \mu \le S^p < \infty .\] But \[ \left( \sum_{k = 1}^K |f_{n_{k + 1}} - f_{n_k} \right)^p \uparrow \left( \sum_{k = 1}^K |f_{n_{k + 1}} - f_{n_k} \right)^p .\] So by \nameref{mconv_thm}, \[ \left\|\sum_{k = 1}^\infty |f_{n_{k + 1}} - f_{n_k}| \right\|_p < \infty .\] So, in particular, \[ \sum_{k = 1}^\infty |f_{n_{k + 1}} - f_{n_k}| < \infty \text{$\mu$.\gls{al_ev}} .\] Let $A$ be the set where this is $< \infty$. Then $\mu(A^c) = 0$. For any $x \in A$, $(f_{n_k}(x))$ is Cauchy, and since $\RR$ is complete, it converges to $f(x)$ say. Define $f(x) = 0$ for all $x \in A^c$. Then $f$ is measurable and $f_{n_k} \to f$ as $k \to \infty$ $\mu$ \gls{al_ev}. Then, \[ \normp\|f_n - f\|_p^p = \mu(|f_n - f|^p) = \mu(\liminf_k |f_n - f_{n_k}|_p^p) \stackrel{\text{\nameref{fatous_lemma}}}{\le} \liminf_k \mu(|f_n - f_{n_k}|^p) \le \eps^p \] and \[ \normp\|f\|_p \stackrel{\text{\nameref{minkowski_ineq}}}{\le} \normp\|f_N - f\|_p + \normp\|f_n\|_p \le \eps^p + \|f_N\|_p < \infty .\] Hence $f \in \Lp$ and $f_n \stackrel{\Lp}{\to} f$. } \end{proof} \end{flashcard} \begin{remark*} One can show that any choice of vector spaces \[ V = \mathcal{C}[0,1], \{\text{simple functions}\}, \{\text{finite linear combination of indicators of intervals}\} \] are dense in $\Lp((0,1), \mathcal{B}, \lambda)$ and so $(\mathcal{C}[0, 1], \normp\|\bullet\|_1)$ is $\Lp[1]$ space of Lebesgue integrable functions (exercise in \es{3}). \end{remark*} \vspace{-1em} $\Lpcal[2]$ as Hilbert space: On a vector space $V$, a symmetric bilinear form $V \times V \to \RR$, $(u, v) \mapsto \langle u, v \rangle$ is called an inner product if $\langle v, v \rangle \ge 0 ~\forall v \in V$ and $\langle v, v \rangle = 0$ if and only if $v = 0$. Then $\sqrt{\langle v, v \rangle} = \|v\|$ is a norm (Cauchy-Schwarz inequality gives the triangle inequality for $\|\bullet\|$). If $(V, \|\bullet\|)$ is complete, it is called a Hilbert space. \begin{corollary*} $\Lpcal[2]$ with the inner product $\langle f, g \rangle = \int fg \dd \mu$ is a Hilbert space. \end{corollary*} \subsubsection*{Basic Geometry} \begin{enumerate}[(1)] \item Pythagoras theorem $\normp\|f + g\|_2^2 = \normp\|f\|_2^2 + \normp\|g\|_2^2 + 2 \langle f, g \rangle$. \item Parallelogram law: $\normp\|f + g\|_2^2 + \normp\|f - g\|_2^2 = 2(\normp\|f\|_2^2 + \normp\|g\|_2^2)$ \end{enumerate} We say $f$ is \emph{orthogonal} to $f$ (written $f \perp g$) if $\langle f, g \rangle = 0$. Then $\normp\|f + g\|_2^2 = \normp\|f\|_2^2 + \normp\|g\|_2^2$. For a subset $V \subseteq L^2$, we define its orthogonal complement \[ V^\perp = \{f \in \Lp[2] : \langle f, v \rangle = 0 ~\forall v \in V\} \] A subset $V$ is closed if $(f_n) \in V$ and $f_n \stackrel{\Lp[2]}{\to} f$ implies $f \in V$.