%! TEX root = PM.tex % vim: tw=50 % 02/11/2023 10AM \begin{lemma*}[Lemma 1] Let $f : E \to \RR$ be $\mathcal{E}$-measurable. Then $\forall x_1 \in E_1$, the function \[ \label{lec13_l8_eq} x_2 \mapsto f(x_1, x_2) : E_2 \to \RR \tag{$*$} \] is $\mathcal{E}_2$-measurable. \end{lemma*} \begin{proof} $f = \indicator{A}$ where $A = A_1 \times A_2$. \[ \indicator{A} (x_1, x_2) = \indicator{A_1 \times A_2} (x_1, x_2) = \indicator{A_1}(x_1) \cdot \indicator{A_2}(x_2) = \begin{cases} \indicator{A_2}(x_2) & \text{if $x_1 \in A$} \\ 0 & \text{otherwise} \end{cases} \] Let $\mathcal{V}$ be the set of all functions for which \eqref{lec13_l8_eq} holds. If $f_n \in \mathcal{V}$ for all $n$, $f_n \uparrow f$, then $f \in \mathcal{V}$. By \nameref{monotone_class_thm}, $\mathcal{V}$ contains all bounded measurable functions $f$. $f_n = (-n) \vee f \wedge n$, $f_n \in \mathcal{V}$ and $f_n \to f$. So $f \in \mathcal{V}$. \end{proof} \begin{lemma*}[Lemma 2] Let $f : (E, \mathcal{E}) \to \RR$ be measurable and \begin{enumerate}[(i)] \item $f$ is bounded or \item $f$ is non-negative. \end{enumerate} Then \[ f_1(x_1) = \int_{E_2} f(x_1, x_2) \mu_2( \dd x_2), \quad x_1 \in E_1 \] is $\mathcal{E}_1$-measurable and (i) bounded or (ii) non-negative, taking values in $[0, \infty]$. \end{lemma*} \begin{remark*} A function $f$ taking values in $[0, \infty]$ is measurable means $f^{-1}(\infty) \in \mathcal{E}$, $f^{-1}(A) \in \mathcal{E}$ for all $A \in \mathcal{B}$. \end{remark*} \begin{proof} $f = \indicator{A_1 \times A_2}$ then $f_1(x_1) = \int \indicator{A_1 \times A_2} (x_1, x_2) \mu_2(\dd x_2) = \indicator{A_1}(x_1) \times \mu_2(A_2)$ is $\mathcal{E}_1$-measurable. $f_n \uparrow f$. Use \nameref{mconv_thm} and limit of measurable functions if measurable. Conclude using the \nameref{monotone_class_thm}. \end{proof} \begin{theorem*} \glssymboldefn{pmu}{$\otimes$}{$\otimes$} There exists a unique measure $\mu \defeq \mu_1 \otimes \mu_2$ on $\mathcal{E}$ such that \[ \mu(A_1 \times A_2) = \mu_1(A_1) \mu_2(A_2) \qquad \forall A_1 \in \mathcal{E}_1, A_2 \in \mathcal{E}_2 \] \end{theorem*} \begin{proof} Uniqueness obvious as $\mathcal{A}$ is a \pisys\ generating $\mathcal{E}$ and $\mu$ is a finite measure. For existence, define the iterated integral \[ \mu(A) = \int_{E_1} \left( \int_{E_2} \indicator{A} (x_1, x_2) \mu_2(\dd x_2) \right) \mu_1(\dd x_1) \qquad A \in \mathcal{E} \] This definition makes sense by the previous two lemmas. Clearly, $\mu(\emptyset) = 0$, and $\mu(A_1 \times A_2) = \mu_1(A_1) \mu_2(A_2)$. $\mu$ is countably additive: if $(A_i)$ disjoint, $A = \bigcup{i = 1}^\infty A_i$, then $\indicator{A} = \sum_{i = 1}^\infty \indicator{A_i}$, so apply \nameref{mconv_thm} twice. \end{proof} \begin{remark*} Note that \[ \mu(A) = \int_{E_2} \left( \int_{E_1} \indicator{A} (x_1, x_2) \mu_1(\dd x_1) \right) \mu_2(\dd x_2) \] by \nameref{dynkins_lemma}. \end{remark*} \begin{theorem*}[Fubini-Tonelli] \label{fubini_tonelli} Consider $(E, \mathcal{E}, \mu) = (E_1 \times E_2, \mathcal{E} \pmeas \mathcal{E}_2, \mu_1 \pmu \mu_2)$, $\mu_i(E_i) < \infty$. \begin{enumerate}[(1)] \item Let $f : E \to \RR$ be measurable, $f \ge 0$. Then \[ \mu(f) \stackrel{(\dag)}{=} \int_{E_1} \left( \int_{E_2} f(x_1, x_2) \mu_2(\dd x_2) \right)\mu_1 (\dd x_1) \stackrel{(*)}{=} \int_{E_2} \left( \int_{E_1} f(x_1, x_2) \mu_1(\dd x_1) \right) \mu_2(\dd x_2) \] \item Let $f : E \to \RR$ be $\mu$-integrable (i.e. $\int |f| \dd \mu < \infty$). If we set \[ A_1 = \{x_1 \in E_1 : \int_{E_2} |f(x_1, x_2)| \dd \mu_2(x_2) < \infty\} \] and define $f_1 : E_1 \to \RR$ by $f_1(x_1) = \int_{E_2} f(x_1, x_2) \dd \mu_2(x_2)$ for all $x_1 \in A_1$ and $0$ otherwise. Then $\mu_1(A_1^c) = 0$ and $f_1$ is $\mu_1$-integrable and $\mu_1(f_1) = \mu(f)$. \end{enumerate} \end{theorem*} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item The identities ($\dag$) and ($*$) hold for $f = \indicator{A}$ for $A \in \mathcal{E}$, by definition of product measure $\mu$. Hence they extend to simple functions by linearity and for general functions $f \ge 0$ by \nameref{mconv_thm} and approximation by simple functions $f_n = 2^{-n} \left\lfloor 2^n f \right\rfloor \wedge n$. \item Define $h : E_1 \to [0, \infty]$ as $h(x_1) = \int_{E_2} |f(x_1, x_2)| \mu_2(\dd x_2)$. By the Lemma 2, $h$ is measurable (as $|f| \ge 0$), is non-negative, so $A_1 \in \mathcal{E}_1$ (as $h^{-1}(\{\infty\}) \in \mathcal{E}_1$, $\{\infty\} = A_1^c$). So by (1), \[ \int_{E_1} \left( \int_{E_2} |f(x_1, x_2)| \mu_2(\dd x_2) \right)\mu_1(\dd x_1) = \mu(|f|) < \infty .\] Hence, $\mu_1(A_1^c) = 0$ (hence $f_1$ integrable) (as $\mu(h) \ge \mu(h \indicator{A_1^c}) = \infty$ if $\mu(A_1^c) > \infty$). Setting \[ f_1^+(x_1) = \int_{E_2} f^+(x_1, x_2) \mu_2(\dd x_2), \qquad f_1^-(x) = \int_{E_2} f^-(x_1, x_2) \mu_2(\dd x_2) ,\] we see \[ f_1 = (f_1^+ - f_1^-) \indicator{A_1} = f_1^+ \indicator{A_1} - f_1^- \indicator{A_1} \] Also, $\mu_1(f_1^+) \stackrel{(1)}{=} \mu(f^+) < \infty$ and $\mu_1(f_1^-) \stackrel{(1)}{=} \mu(f^-) < \infty$, so, \[ \mu(f) = \mu(f^+) - \mu(f^-) = \mu_1(f_1^+) - \mu_1(f_1^-) = \mu_1(f_1) \qedhere \] \end{enumerate} \end{proof} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item The proof of (2) is symmetric in $\mu_1$, $f_1$, so $\mu_1(f) = \mu(f) = \mu_2(f_2)$. So we can interchange the order of integrals whenever $f \ge 0$ or $f$ integrable. \item The theorems extend to $\sigma$-finite measures $\mu$. \item Associativity is easy to check, i.e. $(\mathcal{E}_1 \pmeas \mathcal{E}_2) \pmeas \mathcal{E}_3 = \mathcal{E}_1 \pmeas (\mathcal{E}_2 \pmeas \mathcal{E}_3)$ and $\mu_1 \pmu (\mu_2 \pmu \mu_3) = (\mu_1 \pmu \mu_2) \pmu \mu_3$. So we can define the $n$-fold products $\bigotimes_{i = 1}^n \mu_i$ on $(E_1 \times \cdots \times E_n, \mathcal{E} \pmeas \cdots \pmeas \mathcal{E}_n)$ and $n$-fold integrals. In particular, when $E_i = \RR$ and $\mu_i = \lambda$, we get $\bigotimes_{i = 1}^n \lambda_i$ on $(\RR^n, \mathcal{B}(\RR^n))$. \end{enumerate} \end{remark*}