%! TEX root = PM.tex % vim: tw=50 % 31/10/2023 10AM \begin{theorem*}[DCT for \gls{al_surely} convergence] $(\Omega, \mathcal{F}, \PP)$ is a probability space and $(X_n)$, $X$ are random variables. Suppose $X_n \to X$ $\PP$ \gls{al_surely} and $|X_n| \le Y$ $\forall n$ for some integrable random variable $Y$ (i.e. $\EE Y < \infty$), then \[ \EE|X_n - X| \to 0 \] as $n \to \infty$. \end{theorem*} \begin{theorem*}[DCT for in $\PP$ convergence] $(\Omega, \mathcal{F}, \PP)$ is a probability space and $(X_n)$, $X$ are random variables. SUppose $X_n \to X$ in $\PP$ probability, and $|X_n| \le Y$ $\forall n$ for some integrable random variable $Y$. Then \[ \EE|X_n - X| \to 0 \] as $n \to \infty$. \end{theorem*} \begin{proof} Suppose $\EE |X_n - X| \not\to 0$. Then there exists a subsequence $(n_k)$ such that $\EE|X_{n_k} - X| > \eps$ for all $k$, for some $\eps > 0$. Now, $X_n \convP X$ implies $X_{n_k} \convP X$. Hence $\exists (n_{k_l})$ such that $X_{n_{k_l}} \convas X$ and $|X_{n_{k_l}}| \le Y$. But then by \nameref{dconv_thm}, $\EE|X_{n_{k_l}}| \to 0$, but that contradicts the constructed property of $(n_k)$. \end{proof} \begin{theorem*}[BCT for in $\PP$ convergence] $X_n \convP X$ and $|X_n| \le M$ for some constant $M > 0$, $\forall n \ge 0$. Then $\EE|X_n - X| \to 0$. \end{theorem*} \begin{theorem*}[Differentiation under the integral sign] Let $U \subseteq \RR$ be open and $f : U \times E \to \RR$ such that \begin{enumerate}[(i)] \item $x \mapsto f(t, x)$ is integrable for all $t \in U$. \item $t \mapsto f(t, x)$ is differentiable $\forall x \in E$. \item $\exists g : E \to \RR$ integrable such that $\forall x \in E$, $\forall t \in U$, \[ \left| \pfrac{f}{t} (t, x) \right| \le g(x) .\] \end{enumerate} THen $x \mapsto \pfrac{f}{t}(t, x)$ is integrable $\forall t$ and $F : U \to \RR$ defined by \[ F(t) = \int_E f(t, x) \mu(\dd x) \] is differentiable and \[ \dfrac{}{t} F(t) = \int \pfrac{f}{t} (t, x) \mu(\dd x) .\] \end{theorem*} \begin{proof} For $h_n \to 0$, set \[ g_n(x) = \frac{f(t + h_n, x) - f(t, x)}{h_n} - \pfrac{f}{t} \] For any fixed $t$, $g_n(x) \to 0$ for all $x \in E$ (by (ii)), and \[ |g_n(x)| = \left| \ub{\pfrac{f}{t} (\tilde{t}, x)}_{\text{MVT}} - \pfrac{f}{t}(t, x) \right| \stackrel{\text{(iii)}}{\le}\le 2g(x) \] and $2g$ is integrable. Hence, $\mu(g_n) \to 0$ by \nameref{dconv_thm}, i.e. \[ \int \frac{f(t + h_n) - f(t, x)}{h_n} \mu (\dd x) - \int \pfrac{f}{t} (t, x) \mu(\dd x) \to 0 \] i.e. \[ \ub{\lim_{n \to \infty} \frac{F(t + h_n) - F(t)}{h_n}}_{= F'(t)} = \int \pfrac{f}{t}(t, x) \mu(\dd x) . \qedhere \] \end{proof} \subsubsection*{Integrals and image measures} Let $f : (E, \mathcal{E}, \mu) \to (G, \mathcal{G})$ be measurable with the image measure $\nu = \mu \circ f^{-1}$ on $(G, \mathcal{G})$. If $g : (G, \mathcal{G}) \to \RR$ measurable, $\ge 0$, then \[ \nu(g) = \int_G g(x) \dd \nu(x) = \int_G g \dd \mu \circ f^{-1} \stackrel{?}{=} \int_E g(f(x)) \dd \mu(x) \] (the $?$ equality is an exercise on \es{2}). Then \[ \boxed{\mu \circ f^{-1}(g) = \mu(g \circ f)} \] In part, for $X : (\Omega, \mathcal{F}, \PP) \to \RR$ measurable, $X \ge 0$, we have \[ \EE(g(X)) = \int_\Omega g(X(\omega)) \dd \PP(\omega) = \int g(x) \dd \mu_X(x) \] where $\mu_X = \PP \circ X^{-1}$ is the \emph{law} of $X$. \subsubsection*{Densities of measures} For $f : (E, \mathcal{E}, \mu) \to \RR$ measurable, $\ge 0$, let \[ \nu(A) = \mu(f \indicator{A}) ~\forall A \in \mathcal{E} \qquad \left( = \int_A f \dd \mu \right) \] Then $\nu$ is a measure on $(E, \mathcal{E})$ (check). For any $g$ measurable, $g \ge 0$ on $E$, $\nu(g) = \mu(fg)$, i.e. $\int g \dd \nu = \int gf \dd \mu$. \begin{proof} Holds for indicators by definition, then holds for simple functions by additivity, and for non-negative measurable functions by MCT. \end{proof} We say that $\nu$ has the density $f$ with respect to $\mu$. ($\mu(f \indicator{A}) = \mu(g \indicator{A}) ~\forall A \in \mathcal{E}$ $\implies$ $f = g$ $\mu$ \gls{al_ev} (\es{2})). IN part, for $\mu = \lambda$ (Lebesgue measure), $\forall f$ Borel, if $\mu(f \indicator{A}) = 0$ for all $A$ in a \pisys\ generating $\mathcal{E}$, then $f= 0$ \gls{al_ev}. There exists a Borel measure $\nu$ on $\RR$ given by $\nu(A) = \int_A f(x) \dd x$ and then $\forall g$ Borel, $g \ge 0$, $\nu(g) = \int f(x) g(x) \dd x$. We say that $\nu$ has density $f$. This $\nu$ is a probability measure on $(\RR, \mathcal{B})$ if and only if $\int f(x) \dd x = 1$. For $X : (\Omega, \mathcal{F}, \PP) \to \RR$, if the law $\mu_X$ (i.e. $\PP \circ X^{-1}$) has the density $f_X$ (with respect to $\lambda$), we call $f_X$ the probability density of $X$. Then \[ \PP(X \in A) = \PP \circ X^{-1}(A) = \mu_X(A) = \int_A f_X(x) \dd x \qquad \forall A \in \mathcal{B} \forall \text{$g$ Borel}, g \ge 0 \] (taking $A = (-\infty, x]$, $F_X(x) = \int_{-\infty}^\infty f_X(x) \dd x$. If $F_X' = f_X$, then this holds). \[ = \int g(x) \dd \mu_X(x) = \int g(x) f_X(x) \dd x \] \subsection{Product Measures} \begin{flashcard}[product-measure-defn] \begin{definition*}[Product measure] \glssymboldefn{prod_measure}{$\otimes$}{$\otimes$} \cloze{ Let $(E_1, \mathcal{E}_1, \mu_1)$ and $(E_2, \mathcal{E}_2, \mu_2)$ be 2 \emph{finite} measure spaces. On the Cartesian product $E \defeq E_1 \times E_2$, we consider the set of `rectangles' \[ \mathcal{A} = \{A_1 \times A_2 : A_1 \in \mathcal{E}_1, A_2 \in \mathcal{E}_2\} \] Then $\mathcal{A}$ is a \pisys. Define the product \sigalg\ $\mathcal{E} = \mathcal{E}_1 \otimes \mathcal{E}_2 \defeq \sigma(\mathcal{A})$. } \end{definition*} \end{flashcard} \vspace{-1em} One can show that if $E_i$ are topological spaces with a countable basis, then \[ \mathcal{B}(E_1 \times E_2) = \mathcal{B}(E_1) \pmeas \mathcal{B}(E_2) \] (where $E_1 \times E_2$ is the product topology on $E_1 \times E_2$; see Dudley for a proof). \textbf{Goal:} To construct a product measure on $(E_1 \times E_2, \mathcal{E} = \mathcal{E}_1 \pmeas \mathcal{E}_2)$.