%! TEX root = PM.tex % vim: tw=50 % 28/10/2023 10AM \begin{itemize} \item $f \ge 0$, $\mu^*(f) = \sup \{\mu(g), \text{$g$ \gls{simple}}, g \le f\}$. For $f$ \gls{simple}, $\ge 0$, is $\mu^*(f) = \mu(f)$? $\mu^*(f) \ge \mu(f)$ is easy. For any $g$ simple, $g \le f$, $\mu(g) \le \mu(f)$, taking supremum of LHS, we get $\mu^*(f) \le \mu(f)$. \item $f$ measurable, $f \ge 0$, $f$ bounded, then $2^{-n} \left\lfloor 2^n f \right\rfloor$ is \gls{simple}. For unbounded $f$, we truncate to $f_n = 2^{-n} \left\lfloor 2^n f \right\rfloor \wedge n$ (which is \gls{simple} and has $f_n \uparrow f$). \end{itemize} A general question we begun to explore last time: when can we say that \[ \lim \int f_n \dd \mu = \int \lim f_n \dd \mu ?\] \begin{example*} $f_n = \indicator{(n, n + 1)}$, $f_n \ge 0$, $f_n \to 0$ as $n \to \infty$. But $\lim_{n \to \infty} \lambda(f_n) = 1 > \lambda(0) = 0$. \end{example*} \begin{flashcard}[fatous-lemma] \begin{lemma*}[Fatou's Lemma] \refstepcounter{customlemma} \label{fatous_lemma} Let $f_n : (E, \mathcal{E}, \mu) \to \RR$ be measurable, non-negative. Then \[ \mu(\liminf f_n) \cloze{\le} \liminf \mu(f_n) \] \end{lemma*} \fcscrap{ Recall that \[ \boxed{\liminf x_n = \sup_m \inf_{k \ge m} x_k} \] } \begin{proof} \cloze{ For $k \ge n$, $\inf_{m \ge n} f_m \le f_k$. So \[ \mu(\inf_{m \ge n} f_m) \le \mu(f_k) \quad \forall k \ge n \] i.e. \[ \label{lec11_l46_eq} \mu(\inf_{m \ge n} f_m) \le \inf_{k \ge n} \mu(f_k) \le \liminf \mu(f_k) \tag{$*$} \] Let $g_n = \inf_{m \ge n} f_m$. Then $g_n \ge 0$, and $g_n \uparrow \sup_n g_n = \sup_n \inf_{m \ge n} f_m = \liminf f_n$. So by \nameref{mconv_thm}, $\mu(g_n) \uparrow \mu(\liminf f_n)$. Taking limit in \eqref{lec11_l46_eq}, we get \[ \mu(\liminf f_n) \le \liminf \mu(f_n) \qedhere \] } \end{proof} \end{flashcard} \begin{flashcard}[dominated-conv-thm] \begin{theorem*}[Dominated Convergence Theorem] \label{dconv_thm} Let \cloze{$(f_n) : (E, \mathcal{E}, \mu) \to \RR$ be measurable. Suppose $|f_n| \le g$ for all $n$, for some integrable function $g$ (i.e. $\mu(g) < \infty$). Also suppose $f_n \to f$ as $n \to \infty$ on $E$.} Then $f$, $f_n$ are integrable and \[ \mu(f_n) \to \mu(f) \] \end{theorem*} \begin{proof} \cloze{ $f$ is measurable since it is a limit of measurable functions. Also, taking limits of $|f_n| \le g$, we get $|f| \le g$. So, $|f_n| \le g \implies \mu(|f_n|) \le \mu(g) < \infty$, $\mu(|f|) \le \mu(g) < \infty$. So $f_n, f$ are integrable. We have $0 \le g \pm g_n \to g \pm f$, so since $g \pm f_n$ are non-negative, by \nameref{fatous_lemma}, we have \[ \mu(g \pm f) \le \liminf \mu(g \pm f_n) \] i.e. \[ \mu(g) + \mu(f) \le \liminf (\mu(g) + \mu(f_n)) \le \mu(g) + \liminf \mu(f_n) \] \[ \mu(g) - \mu(f) \le \liminf (\mu(g) - \mu(f_n)) \le \mu(g) - \limsup \mu(f_n) \] As $\mu(g) < \infty$, we get \[ \mu(f) \le \liminf \mu(f_n) \le \limsup \mu(f_n) \le \mu(f) \] i.e. $\mu(f_n) \to \mu(f)$. } \end{proof} \end{flashcard} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item The theorem is still true if we change all the conditions to hold \gls{al_ev} (instead of everywhere). \item In fact, $\mu(|f_n - f|) \to 0$ (recall that $\mu(|g|) \ge |\mu(g)|$, which in this case shows $\mu(|f_n - f|) \ge |\mu(f_n) - \mu(f)|$). We prove this by noting $|f_n - f| \le |f_n| + |f| \le g + g = 2g$ and $2g$ is integrable, so applying \nameref{dconv_thm} we get that $\mu(|f_n - f|) \to 0$. \item If $(E, \mathcal{E}, \mu) = (\Omega, \mathcal{F}, \PP)$, $X_n \to X$, $\PP$ \gls{al_surely}, and $|X_n| \le Y$ with $\EE Y < \infty$. Then $\EE X_n \to \EE X$ and $\EE|X_n - X| \to 0$. In particular, if $|X_n| \le M ~\forall n$, for some constant $M > 0$, $M \in \RR$, then $\EE|X_n - X| \to 0$. (Bounded Convergence Theorem). \item $f_n$ measurable on $[0, 1]$ and $|f_n| \le 1$, and $f_n \to f$ pointwise, then $\int f_n \dd x \to \int f \dd x$ ($\int f_n \dd \lambda(x)$). So stronger than Riemann integral as it requires uniform convergence. \end{enumerate} \end{remark*} \subsubsection*{Comparisons with Riemann integral} \begin{enumerate}[(a)] \item FTC: \begin{enumerate}[(1)] \item Let $f : [a, b] \to \RR$ be continuous and set $F(t) = \int_a^t f(x) \dd x$. Then $F$ is differentiable on $[a, b]$ with $F' = f$. \item Let $F : [a, b] \to \RR$ be differentiable and $F'$ is continuous, then $\int_a^b F'(x) \dd x = F(b) - F(a)$. \end{enumerate} Proofs are the same as before (just use $\int_t^{t + h} \dd x = h$). \item[(a$'$)] If $f : [a, b] \to \RR$ is Lebesgue integrable and $F(t) = \int_a^t f(x) \dd x$. Then $\lim_{h \to 0} \frac{F(t + h) - F(t)}{h} = \lim_{h \to 0} \frac{\int_t^{t + h} f(x) \dd x}{h} = f(t)$ \gls{al_ev} (Lebesgue differentiation Theorem in Analysis of Functions). \item Substitution formula: Let $\varphi : [a, b] \to \RR$, $\varphi$ strictly increasing and continuously differentiable. Then for all $g$ Borel measurable, $g \ge 0$ on $[\varphi(q), \varphi(b)]$, \[ \label{lec11_l156_eq} \int_{\varphi(a)}^{\varphi(b)} g(y) \dd y = \int_a^b g(\varphi(x)) \varphi'(x) \dd x \tag{$*$} \] \begin{proof} Let $\mathcal{V}$ be the set of all measurable functions $g$ for which \eqref{lec11_l156_eq} this holds. Then by lineariy of integrals, $\mathcal{V}$ is a vector space. \begin{itemize} \item $\indicator{} \in \mathcal{V}$ by FTC(2). holds. Also, $\indicator{(c, d]} \in \mathcal{V}$ by FTC(2). \item If $f_n \in \mathcal{V}$, $f_n \uparrow f$, $f_n \ge 0$, then by \nameref{mconv_thm}, $f \in \mathcal{V}$. \end{itemize} Hence by \nameref{monotone_class_thm}, \eqref{lec11_l156_eq} holds $\forall g \ge 0$ measurable. \end{proof} \item A (bounded) Riemann integrable (RI) function $f : [a, b] \to \RR$ is Lebesgue integrable in the following sense. If $f$ is bounded on $[a, b]$, $f$ is RI if and only if $\mathcal{D} = \{x \in [a, b] : \text{$f$ is not continuous at $x$}\}$ has $\lambda(\mathcal{D}) = 0$ (Lebesgue 1904), i.e. $f$ is continuous \gls{al_ev}. Such an $f$ need not be Borel (but is Lebesgue measurable), and can be modified on a Lebesgue measure $0$ set to make it Borel, i.e. $\exists \tilde{f}$ Borel such that $\tilde{f} = f$ on $A$ and $\lambda(A^c) = 0$, and $\int \tilde{f} \dd x = \int f \dd x$ (where we use Lebesgue integral on the left, and Riemann integral on the right). \item $\indicator{\QQ}$ on $[0, 1]$. $\mathcal{D} = [0, 1]$, $\lambda(\mathcal{D}) \neq 0$, so $\indicator{\QQ}$ is not Riemann integrable. But $\indicator{\QQ}$ is Lebesgue integrable and $\indicator{\QQ} = 0$ $\lambda$ \gls{al_surely}, so $\lambda(\indicator{\QQ}) = 0$. \end{enumerate}