%! TEX root = PM.tex % vim: tw=50 % 26/10/2023 10AM \begin{example*} If $X_n \convP X$, then $X_n \convdist X$. $X_n \convP X$ but $X_n \not\to X$ \gls{al_surely} ($(0, 1]$, $\mathcal{B}$, $\lambda$). \[ f_1 = \indicator{(0,\half]}, \quad f_2 = \indicator{(\half, 1]} \] \[ f_3 = \indicator{(0, \third]}, \quad f_4 = \indicator{(\third, \frac{2}{3}]}, \quad f_5 = \indicator{(\frac{2}{3}, 1]} \] \[ f_6 = \indicator{(0, \frac{1}{4}]}, \ldots \] Then $f_n \to 0$ in $\lambda$-measure, but $f_n \not\to 0$ $\lambda$ \gls{al_ev}. For any $x \in (0, 1]$, $(f_n(x))$ has an infinite sequence of $1$s, hence $f_n(x) \not\to 0$. \end{example*} \vspace{-1em} Recall, for $f$ simple, i.e. $f = \sum_{k = 1}^m a_k \indicator{A_k}$, $a_k \ge 0$, $A_k \in \mathcal{E}$, then \[ \mu(f) = \int f \dd\mu = \sum_{k = 1}^m a_k \mu(A_k) \] (recall the \nameref{lec9_int_properties} given \lastlecture). \begin{flashcard}[measure-of-function-defn] \begin{definition*}[Measure of function] \cloze{ For $f : E \to \RR$ measurable, $f \ge 0$, define \[ \mu(f) = \sup \{\mu(g) : \text{$g$ simple}, g \le f\} \] } \end{definition*} \end{flashcard} Clearly, if $0 \le f_1 \le f_2$, then $\mu(f_1) \le \mu(f_2)$. For general $f : E \to \RR$ measurable, $f = f^+ - f^-$, where $f^+ = \max(f, 0)$, $f^- = \max(-f, 0)$ and $|f| = f^+ + f^-$. \begin{flashcard}[integrabl-defn] \begin{definition*}[Integrable function] \glsadjdefn{integ_fn}{integrable}{function} \cloze{ We say $f$ is \emph{integrable} if $\mu(|f|) < \infty$ and then define \[ \mu(f) = \mu(f^+) - \mu(f^-) \] ($\mu(|f|) = \mu(f^+) + \mu(f^-)$, hence $|\mu(f)| \le \mu(|f|)$). } \end{definition*} \end{flashcard} \vspace{-1em} If one of $\mu(f^+)$ or $\mu(f^-)$ is $\infty$ and the other is finite, we define $\mu(f)$ to be $\infty$ or $-\infty$ respectively (though $f$ is not \gls{integ_fn}). \begin{itemize} \item $x_n \uparrow x$ to mean $x_n \le x_{n + 1} ~\forall n$, $x_n \to x$ \item $f_n \uparrow f$ to mean $f_n(x) \le f_{n + 1}(x) ~\forall x \in E$ and $f_n(x) \to f(x)$. \end{itemize} \begin{flashcard}[monotone-convergence-thm] \begin{theorem*}[Monotone Convergence Theorem] \label{mconv_thm} \cloze{ Let $(f_n)_n, f : (E, \mathcal{E}, \mu) \to \RR$ measurable and \fcemph{non-negative}, and suppose $f_n \uparrow f$. Then $\mu(f_n) \uparrow \mu(f)$. } \end{theorem*} \end{flashcard} \begin{proof} Recall $\mu(f) = \sup\{\mu(g) : g \le f, \text{$g$ simple}\}$. Let $M = \sup_n (\mu(f_n))$, then $\mu(f_n) \uparrow M$. Need to show that $M = \mu(f)$. Since $f_n \le f$, $\mu(f_n) \le \mu(f)$, so by taking $\sup$, $M \le \mu(f)$. Now need to show $M \ge \mu(f)$. So it is enough to show $M \ge \mu(g)$ for all $g$ \gls{simple}, $g \le f$. Let $g = \sum_{k = 1}^m a_k \indicator{A_k} \le f$. Assume without loss of generality, that $(A_k)$s are disjoint. Define the approximation $g_n$ as \[ g_n(x) = (2^{-n} \left\lfloor 2^n f_n(x) \right\rfloor) \ub{\wedge}_{\min} g(x) \] So $g_n$ is \gls{simple}, $g_n \le \ol{f_n} \le f_n \uparrow f$, so $g_n = \ol{f_n} \wedge g \uparrow f \wedge g = g$, i.e. $g_n \uparrow g$, $g_n$ \gls{simple}, $g_n \le f_n$. Fix $\eps \in (0, 1)$ and consider the sets \[ A_k(n) = \{x \in A_k : g_n(x) \ge (1 - \eps) a_k\} \] Now, $g = a_k$ on the set $A_k$, and $g_n \uparrow g$, so $A_k(n) \uparrow A_k$, hence $\mu(A_k(n)) \uparrow \mu(A_k)$. Also, \[ \indicator{A_k(n)} (1 - \eps) a_k \le \indicator{A_k(n)} g_n \le \indicator{A_k} g_n \] So as $\mu(f)$ is increasing, we have, \begin{align*} \mu(\indicator{A_k(n)} (1 - \eps) a_k) &\le \mu(\indicator{A_k} g_n) \\ \label{lec10_l123_eq} \implies (1 - \eps) a_k \mu(A_k(n)) &\le \mu(\indicator{A_k} g_n) \tag{$*$} \end{align*} Finally, $g_n = \sum_{k = 1}^n \indicator{A_k} g_n$ ($g_n \le g$ and $g$ support on $\bigcup_{k = 1}^n A_k$ and $(A_k)$ are disjoint), so \begin{align*} \mu(g_n) &= \mu \left( \sum_{k = 1}^n \indicator{A_k} g_n \right) \\ &= \sum_{k = 1}^n \mu(\indicator{A_k} g_n) \\ &\ge \sum_{k = 1}^n (1 - \eps) a_k \mu(A_k(n)) &&\text{by \eqref{lec10_l123_eq}} \\ &\uparrow \sum_{k = 1}^n (1 - \eps) a_k \mu(A_k) \\ &= (1 - \eps) \mu(g) \end{align*} Then \[ (1 - \eps) \mu(g) \le \lim_{n \to \infty} \mu(g_n) \ub{\le}_{g_n \le f_n} \lim_{n \to \infty} \mu(f_n) \le M \] i.e. $\mu(g) \le \frac{M}{1 - \eps}$ for all $\eps > 0$, hence $\mu(g) \le M$. \end{proof} \begin{theorem*} Let $(f, g) : (E, \mathcal{E}, \mu) \to \RR$ be measurable, non-negative. Then $\forall \alpha, \beta \ge 0$, \begin{enumerate}[(a)] \item $\mu(\alpha f + \beta g) = \alpha \mu(f) + \beta \mu(g)$ \item $f \le g \implies \mu(f) \le \mu(g)$ \item $f = 0$ \gls{al_ev} $\iff$ $\mu(f) = 0$. \end{enumerate} \end{theorem*} \begin{proof} \begin{enumerate}[(a)] \item Let $f_n = (2^{-n} \left\lfloor 2^n f \right\rfloor) \wedge n$, $g_n = (2^{-n} \left\lfloor 2^n g \right\rfloor) \wedge n$. Then, $f_n, g_n$ are \gls{simple} and $f_n \uparrow f$, $g_n \uparrow g$. Then $\alpha f_n + \beta g_n \uparrow \alpha f + \beta g$. So by \nameref{mconv_thm}, $\mu(f_n) \uparrow \mu(f)$, $\mu(g_n) \uparrow \mu(g)$, $\mu(\alpha f_n + \beta g_n) \uparrow \mu(\alpha f + \beta g)$. \item Obvious from the definition. \item If $f = 0$ \gls{al_ev}, then $0 \le f_n \le f$, so $f_n = 0$ \gls{al_ev}, but $f_n$ \gls{simple} $\implies \mu(f_n) = 0$ and $\mu(f_n) \uparrow \mu(f)$ so $\mu(f) = 0$. \qedhere \end{enumerate} \end{proof} \begin{theorem*} Now, let $f, g : (E, \mathcal{E}, \mu) \to \RR$ be \gls{integ_fn}. Then $\forall \alpha, \beta \in \RR$, \begin{enumerate}[(a)] \item $\mu(\alpha f + \beta g) = \alpha \mu(f) + \beta \mu(g)$ \item $f \le g \implies \mu(f) \le \mu(g)$ \item $f = 0$ \gls{al_ev} $\implies \mu(f) = 0$. \end{enumerate} \end{theorem*} \begin{proof} Exercise. Set $f = f^+ - f^-$, $g = g^+ - g^-$, and use definition, $\mu(f) = \mu(f^+) - \mu(f^-)$. If $\mu(f^+) = \mu(f^-)$, then $\mu(f) = 0$ but $f$ need not be $0$ \gls{al_ev}. \end{proof} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item If $0 \le f_n \uparrow f$ \gls{al_ev}, then $\mu(f_n) \uparrow \mu(f)$. \item \nameref{mconv_thm} $\implies \lim_n \int f_n \dd \mu = \int \lim_n f_n \dd \mu$ for $0 \le f_n \uparrow \lim f_n = f$. If $g_n \ge 0$, then (writing $f_n = \sum_{k = 1}^n g_k$, $f_n \uparrow f = \sum_{k = 1}^\infty g_k$), \begin{align*} \implies \lim_n \int \sum_{k = 1}^n g_k \dd \mu &= \int \left( \sum_{k = 1}^\infty g_k \right) \dd \mu \\ \implies \sum_{k = 1}^\infty \int g_k \dd \mu &= \int \sum_{k = 1}^\infty g_k \dd \mu \end{align*} i.e. \[ \boxed{\sum_{k = 1}^\infty \mu(g_k) = \mu \left( \sum_{k = 1}^\infty g_k \right)} \] This generalises the countable additivity of $\mu$ to integrals of non-negative functions. In part, if $g_k = \indicator{A_k}$ where $(A_k)$ disjoint, implies countable additivity of $\mu$. \end{enumerate} \end{remark*}