%! TEX root = PM.tex % vim: tw=50 % 05/10/2023 10AM \section{Introduction} \subsection{Some Questions} \subsubsection*{Holes in Classical Theory of Analysis} \begin{enumerate}[(1)] \item What is the ``volume'' of a subset of $\RR^d$? $d = 2$ we have ``area'', $d = 1$ we have ``length'' (we know the length of intervals). \item Integration: Riemann Integral has holes. Let $\{f_n\}$ be a sequence of continuous functions on $[0, 1]$ such that $0 \le f_n(x) \le 1$ for all $x \in [0, 1]$, $f_n(x)$ is monotonically decreasing as $n \to \infty$, i.e. $f_n(x) \ge f_{n + 1}(x)$ for all $x$. So, $\lim_{n \to \infty} f_n(x) = f(x)$ exists for all $x$. So $\lim_{n \to \infty} \int_0^1 f_n(x) \dd x$ exists. But $f$ is not \emph{necessarily} Riemann integrable. We want a new theory of integrals such that $f$ is integrable, and such that $\lim_{n \to \infty} \int_0^1 f_n(x) \dd x = \int_0^1 f(x) \dd x$. \item Let $L' = \ol{(\mathcal{C}[0, 1], \| \bullet \|_1)}$. If $f \in L'$, is $f$ Riemann integrable? ($\|f\|_1 = \int_{0^1} |f(x)| \dd x$). Will have to change the definition of integral. $L^2 = \text{a Hilbert space}$ \to Fourier Analysis. \end{enumerate} \subsubsection*{Holes in Classical Theory of Probability} \begin{enumerate}[(1)] \item Discrete probability has its limitations. \begin{itemize} \item Toss an unbiased coin 5 times. What is the probability of getting 3 heads? This is a question we know how to answer. \item Take an infinite sequence of coin tosses and an event $A$ that depends on that infinite sequence. How to define $P(A)$? (For example Strong Law of Large Numbers). \item How to draw a point uniformly at random from $[0, 1]$? \end{itemize} Probability needs \emph{axioms} to be made rigorous. \item Define expectation ($\EE$) for a random variable. Also would want the following: if $0 \le X_n \le 1$ and $X_n \downarrow X$, then $\EE X_n \to \EE X$. \end{enumerate} \subsection{Basic Definitions} \begin{flashcard}[sigma-algebra] \begin{definition*}[$\sigma$-algebra] Let $E$ be a set. A $\sigma$-algebra $\mathcal{E}$ is \cloze{a collection of subsets of $E$ such that \begin{itemize} \item $\emptyset \in \mathcal{E}$ \item if $A \in \mathcal{E}$, then $A^c \in \mathcal{E}$ ($A^c = E \setminus A$) \item if $(A_n : n \in \NN)$, $A_n \in \mathcal{E} \forall n$, then $\bigcup_n A_n \in \mathcal{E}$ too. \end{itemize} $(E, \mathcal{E})$ is called a \emph{measurable space}. } \end{definition*} \end{flashcard} \begin{example*} $\mathcal{E} = (\emptyset, E)$ or $\mathcal{E} = \mathcal{P}(E)$ (power set). Typically, we will deal with things somewhere between these extremes. \end{example*} \begin{remark*} Since $\bigcap_n A_n = \left( \bigcup_n A_n^c \right)^c$, any $\sigma$-algebra is stable under countable intersections. Also, if $a, B \in \mathcal{E}$, then $B \setminus A = B \cap A^c \in \mathcal{E}$. \end{remark*} \begin{flashcard}[measure-defn] \begin{definition*}[Measure] A \emph{measure} $\mu$ on $(E, \mathcal{E}$) is a \cloze{non-negative function $\mu : \mathcal{E} \to [0, \infty]$ such that \begin{itemize} \item $\mu(\emptyset) = 0$ \item For all sequences $A_n$, $n \in \NN$ with $A_n \in \mathcal{E}$ and all $A_n$ pairwise disjoint, we have countable additivity: \[ \mu \left( \bigcup_{n = 1}^\infty A_n \right) = \sum_{n = 1}^\infty \mu(A_n) \] \end{itemize} We call $(e, \mathcal{E}, \mu)$ a \emph{measure space}. } \end{definition*} \end{flashcard} \begin{remark*} Let $E$ be a countable set, with $\mathcal{E} = \mathcal{P}(E)$. Then $\forall A \subset E$, $\mu(A) = \mu \left( \bigcup_{x \in A} \{x\} \right) = \sum_{x \in A} \mu(\{x\}) = \sum_{x \in A} m(x)$, where we define $m : E \to [0, \infty]$ such that $m(x) = \mu(\{x\}$. We call such an $m$ a ``mass function'' (or pmf in discrete probability), and measures $\mu$ are in one-to-one correspondence with mass function $m$. Here $\mathcal{E} = \mathcal{P}(E)$ and this is the theory in elementary discrete probability (when $\mu(\{x\}) = 1$ for all $x \in E$, $\mu$ is called a counting measure, and here $\mu(A) = |A|$ for all $A \subset E$). \end{remark*} \vspace{-1em} \noindent For uncountable $E$ however, the story is not so simple and $\mathcal{E} = \mathcal{P}(E)$ is generally not feasible. Instead measures are defined on $\sigma$-algebras ``\emph{generated}'' by a smaller class $\mathcal{A}$ of simple subsets of $E$. \begin{flashcard}[sigma-algebra-generated-by-defn] \begin{definition*}[Generated $\sigma$-algebra] \cloze{ If $\mathcal{A}$ is any collection of subsets of $E$, we define \[ \sigma(\mathcal{A}) = \{A \subseteq E : A \in \mathcal{E} \forall \text{ $\sigma$-algebras } \mathcal{E} \supseteq \mathcal{A}\} = \bigcap_{\substack{\mathcal{E} \supseteq \mathcal{A} \\ \text{$\mathcal{E}$ a $\sigma$-algebra}}} \mathcal{E} \] We call this \emph{the $\sigma$-algebra generated by $\mathcal{A}$}. It is the smallest $\sigma$-algebra containing $\mathcal{A}$. } \end{definition*} \end{flashcard} \vspace{-1em} \noindent Why is $\sigma(\mathcal{A})$ a $\sigma$-algebra? Answer: Example Sheet 1 problem 1. The class $\mathcal{A}$ will usually satisfy some properties too. \begin{flashcard}[measure-ring] \begin{definition*}[Ring] \cloze{ Let $E$ be a set and $\mathcal{A}$ a collection of subsets of $E$. $\mathcal{A}$ is called a \emph{ring} if \begin{itemize} \item $\emptyset \in \mathcal{A}$ \item For all $A, B \in \mathcal{A}$, $A \cup B \in \mathcal{A}$ and $B \setminus A \in \mathcal{A}$. \end{itemize} } \end{definition*} \end{flashcard} \begin{remark*} If $A, B \in \mathcal{A}$, $\mathcal{A}$ a ring, then \[ A \triangle B = (A \setminus B) \cup (B \setminus A) \in \mathcal{A} \] \[ A \cap B = (A \cup B) \setminus (A \triangle B) \in \mathcal{A} \] \end{remark*} \begin{flashcard}[measure-algebra] \begin{definition*}[Algebra] $\mathcal{A}$ is called an \emph{algebra} if\cloze{ \begin{itemize} \item $\emptyset \in \mathcal{A}$ \item If $A, B \in \mathcal{A}$, then $A^c \in \mathcal{A}$ and $A \cup B \in \mathcal{A}$. \end{itemize} } \end{definition*} \end{flashcard} \begin{remark*} If $\mathcal{A}$ an algebra and $A, B \in \mathcal{A}$, then $A \cap B \in \mathcal{A}$ and $B \setminus A = B \cap A^c \in \mathcal{A}$. So an algebra is also a ring. $\{\emptyset\}$ is a ring, but not an algebra. \end{remark*} \vspace{-1em} \noindent The idea: \begin{itemize} \item Define a set function on a suitable collection $\mathcal{A}$. \item Extend the set function to a measure on $\sigma(\mathcal{A})$ (Caratheodory's Extension theorem). \item Such an extension is unique (Dynkin's lemma). \end{itemize}