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Start of

lecture 1
1 Introduction

1.1 Some Questions

Holes in Classical Theory of Analysis

(1) What is the “volume” of a subset of Rd? d = 2 we have “area”, d = 1 we have
“length” (we know the length of intervals).

(2) Integration: Riemann Integral has holes. Let {fn} be a sequence of continuous
functions on [0, 1] such that 0 ≤ fn(x) ≤ 1 for all x ∈ [0, 1], fn(x) is monotonically
decreasing as n → ∞, i.e. fn(x) ≥ fn+1(x) for all x. So, limn→∞ fn(x) = f(x)
exists for all x. So limn→∞

∫ 1
0 fn(x)dx exists. But f is not necessarily Riemann

integrable. We want a new theory of integrals such that f is integrable, and such
that limn→∞

∫ 1
0 fn(x)dx =

∫ 1
0 f(x)dx.

(3) Let L′ = (C[0, 1], ‖ • ‖1). If f ∈ L′, is f Riemann integrable? (‖f‖1 =
∫
01 |f(x)|dx).

Will have to change the definition of integral. L2 = a Hilbert space →Fourier Anal-
ysis.

Holes in Classical Theory of Probability

(1) Discrete probability has its limitations.

• Toss an unbiased coin 5 times. What is the probability of getting 3 heads?
This is a question we know how to answer.

• Take an infinite sequence of coin tosses and an event A that depends on that
infinite sequence. How to define P (A)? (For example Strong Law of Large
Numbers).

• How to draw a point uniformly at random from [0, 1]?

Probability needs axioms to be made rigorous.

(2) Define expectation (E) for a random variable. Also would want the following: if
0 ≤ Xn ≤ 1 and Xn ↓ X, then EXn → EX.
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1.2 Basic Definitions

Definition (σ-algebra). Let E be a set. A σ-algebra E is a collection of subsets of
E such that

• ∅ ∈ E

• if A ∈ E , then Ac ∈ E (Ac = E \A)

• if (An : n ∈ N), An ∈ E∀n, then
⋃

nAn ∈ E too.

(E, E) is called a measurable space.

Example. E = (∅, E) or E = P(E) (power set). Typically, we will deal with things
somewhere between these extremes.

Remark. Since
⋂

nAn = (
⋃

nA
c
n)

c, any σ-algebra is stable under countable inter-
sections. Also, if a,B ∈ E , then B \A = B ∩Ac ∈ E .

Definition (Measure). A measure µ on (E, E) is a non-negative function µ : E →
[0,∞] such that

• µ(∅) = 0

• For all sequences An, n ∈ N with An ∈ E and all An pairwise disjoint, we have
countable additivity:

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

We call (e, E , µ) a measure space.

Remark. Let E be a countable set, with E = P(E). Then ∀A ⊂ E, µ(A) =
µ
(⋃

x∈A{x}
)
=
∑

x∈A µ({x}) =
∑

x∈Am(x), where we define m : E → [0,∞] such
that m(x) = µ({x}. We call such an m a “mass function” (or pmf in discrete
probability), and measures µ are in one-to-one correspondence with mass function
m. Here E = P(E) and this is the theory in elementary discrete probability (when
µ({x}) = 1 for all x ∈ E, µ is called a counting measure, and here µ(A) = |A| for
all A ⊂ E).
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For uncountable E however, the story is not so simple and E = P(E) is generally not
feasible. Instead measures are defined on σ-algebras “generated” by a smaller class A of
simple subsets of E.

Definition (Generated σ-algebra). If A is any collection of subsets of E, we define

σ(A) = {A ⊆ E : A ∈ E∀ σ-algebras E ⊇ A} =
⋂
E⊇A

E a σ-algebra

E

We call this the σ-algebra generated by A. It is the smallest σ-algebra containing A.

Why is σ(A) a σ-algebra? Answer: Example Sheet 1 problem 1.

The class A will usually satisfy some properties too.

Definition (Ring). Let E be a set and A a collection of subsets of E. A is called
a ring if

• ∅ ∈ A

• For all A,B ∈ A, A ∪B ∈ A and B \A ∈ A.

Remark. If A,B ∈ A, A a ring, then

A4B = (A \B) ∪ (B \A) ∈ A

A ∩B = (A ∪B) \ (A4B) ∈ A

Definition (Algebra). A is called an algebra if

• ∅ ∈ A

• If A,B ∈ A, then Ac ∈ A and A ∪B ∈ A.

Remark. If A an algebra and A,B ∈ A, then A∩B ∈ A and B \A = B ∩Ac ∈ A.
So an algebra is also a ring. {∅} is a ring, but not an algebra.

The idea:

• Define a set function on a suitable collection A.
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• Extend the set function to a measure on σ(A) (Caratheodory’s Extension theorem).

• Such an extension is unique (Dynkin’s lemma).

Start of

lecture 2 Definition (Set-function). Let A be any collection of subsets of E such that ∅ ∈ A.
A set-function µ is a map µ : A → [0,∞] such that µ(∅) = 0. We say

(1) µ is increasing if µ(A) ≤ µ(B) for all A,B ∈ A such that A ⊂ B.

(2) µ is additive if Aµ(A ∪B) = µ(A) + µ(B) for all A,B ∈ A with A, B disjoint.

(3) µ is countably additive if µ (
⋃

nAn) =
∑

n µ(An) for all An disjoint such that
An,

⋃
nAn ∈ A.

(4) µ is countably subadditive if µ (
⋃

nAn) ≤
∑

n µ(An) for all An,
⋃

nAn ∈ A.

Remark. If µ is a countably additive set function on A, and A is a ring, then µ
satisfies (Example Sheet 1) all of (1), (2), (3), (4).

Theorem (Caratheodory). Let A be a ring of subsets of E and µ : A → [0,∞] be
a countably additive set function on A. Then µ extends to a measure on σ(A).

Proof. For any B ⊆ E, define

µ∗(B) = inf

({∑
µ(Ai) : B ⊆

⋃
i

Ai, Ai ∈ A

}
∪ {∞}

)

Clearly µ∗(φ) = 0 and µ∗ is increasing. So µ∗ is an increasing set function on P(E).

Call a set A ⊂ E µ∗ measurable if ∀B ⊆ E,

µ∗(B) = µ∗(B ∩A) + µ∗(B ∩Ac).

Define M = {A ⊂ E : A is µ∗ measurable}. Shall show M is a σ-algebra that contains
A, µ∗|M is a measure on M that extends µ (i.e. µ∗|A = µ).

Step 1: µ∗ is countably subadditive, i.e. if B ⊆
⋃

nBn, will show µ∗(B) ≤
∑

n µ
∗(Bn).

Nothing to prove if µ∗(Bn) = ∞ for some n. Sow assume µ∗(Bn) < ∞ for all n. For all
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ε > 0, there exists (An,m) ∈ A such that Bn ⊂
⋃

mAn,m and µ∗(Bn)+
ε
2n ≥

∑
m µ(An,m).

But then, B ⊆
⋃

nBn ⊆
⋃

n,mAn,m and (An,m) ∈ A, so by definition of µ∗,

µ∗(B) ≤
∑
n

∑
m

µ(An,m) ≤
∑
n

(
µ∗(Bn) +

ε

2n

)
=
∑
n

µ∗(Bn) + ε

As ε > 0 is arbitrary, we get the desired result.

Step 2: µ∗ extends µ, i.e. for all A ∈ A, µ∗(A) = µ(A). (µ∗(A) ≤ µ(A) by definition of
µ∗ as A ⊆ A, A ∈ A). Now we prove µ∗(A) ≥ µ(A). As µ is countably additive on AA
and A is a ring, µ is countably sub-additive on A and increasing (by earlier Remark).
Now, let A ⊂

⋃
n(A ∩An), so by countable sub-additivity on A,

µ(A) ≤
∑
n

µ(A ∩An) ≤
∑
n

µ(An)

(the second inequality is because µ is increasing). So by taking inf over all such {An},
µ(A) ≤ µ∗(A).

Step 3: M ⊇ A, i.e. A ∈ A and B ⊆ E, want to show

µ∗(B) = µ∗(B ∩A) + µ∗(B ∩Ac)

Since B ⊆ (B ∩ A) ∪ (B ∩ Ac), by Step 1 (countable sub additivity), µ∗(B) ≤ µ∗(B ∩
A) + µ∗(B ∩Ac). To prove µ∗(B) ≥ µ∗(B ∩A) + µ∗(B ∩Ac), without loss of generality
assume µ∗(B) < ∞. So again ∀ε > 0, there exists (An) ∈ A with B ⊆

⋃
nAn such that

µ∗(B) + ε ≥
∑

n µ(An). Then (B ∩A) ⊆
⋃

n(An ∩A) and (B ∩Ac) ⊆
⋃

n(An ∩Ac). So
that

µ∗(B ∩A) ≤
∑

µ(An ∩A) and µ∗(B ∩Ac) ≤
∑
n

µ(An ∩Ac),

so that

µ∗)B ∩A) + µ∗(B ∩Ac) ≤
∑
n

(µ(An ∩A) + µ(An ∩Ac)) =
∑

µ(An) ≤ µ∗(B) + ε

As ε > 0 is arbitrary, we get µ∗(B ∩A) + µ∗(B ∩Ac) ≤ µ∗(B).

Step 4: M is an algebra: φ ∈ M . Also if A ∈ M, then Ac ∈ M. Now let A1, A2 ∈ M
and B ⊂ E. Then

µ∗(B) = µ∗(B ∩A1) + µ∗(B ∩Ac
1) (as A1 ∈ M)

= µ∗(B ∩A1 ∩A2) = µ∗(B ∩A1 ∩Ac
2) + µ∗(B ∩Ac

1) (as A2 ∈ M)
= µ∗(B ∩ (A1 ∩A2)) + µ∗(B ∩ (A1 ∩A2)

c ∩A1) + µ∗(B ∩ (A1 ∩A2)
c ∩Ac

1)

= µ∗(B ∩ (A1 ∩A2)) + µ∗(B ∩ (A1 ∩A2)
c) (as A1 ∈ M, B ∩ (A1 ∩A2)

c = B̃)

So A1 ∩A2 ∈ M.
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Step 5: M is a σ-algebra and µ∗|M is a measure (since M is an algebra, convince
yourself), i.e. for any sequence (An) ∈ M with An pairwise disjoint, we want to prove
A :=

⋃
nAn ∈ M and µ(A) =

∑
n µ(An). So, as before for any B ⊆ E,

µ∗(B) = µ∗(B ∩A1) + µ∗(B ∩Ac
1) (as A1 ∈ M)

= µ∗(B ∩A1) + µ∗(B ∩Ac
1 ∩A2) + µ∗(B ∩Ac

1 ∩Ac
2) (as A2 ∈ M)

= µ∗(B ∩A1) + µ∗(B ∩A2) + µ∗(B ∩Ac
1 ∩Ac

2)

...

=

n∑
i=1

µ∗(B ∩Ai) + µ∗(B ∩Ac
1 ∩ · · · ∩Ac

n)

≥
n∑

i=1

µ∗(B ∩A1) + µ∗(B ∩Ac)

The last inequality comes from the fact that µ∗ is increasing and since A =
⋃

iAi, we
have Ac = ∩Ac

i ⊆ Ac
1 ∩ · · · ∩Ac

n.

So as n → ∞,

µ∗(B) ≥
∞∑
i=1

µ∗(B ∩A1) + µ∗(B ∩Ac)

≥ µ∗(B ∩A) + µ∗(B ∩Ac)

Also,

µ∗(B) ≤ µ∗(B ∩A) + µ∗(B ∩Ac)

is obvious by sub additivity. So µ∗(B) = µ∗(B ∩A) + µ∗(B ∩Ac), i.e. A ∈ M.

Start of

lecture 3 To address the uniqueness of extension, we introduce further subclasses of P(E). Let A
be a collection of subsets of E.

Definition (π-system). A is called a π-system if ∅ ∈ A and ∀A,B ∈ A, A∩B ∈ A.
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Definition (d-system). A is called a d-system (for Dynkin, alternatively called a
λ-system) if

• E ∈ A

• A,B ∈ A and A ⊆ B, then B \A ∈ A

• {An} ∈ A and An ↑ A =
⋃

nAn, then A ∈ A (A1 ⊆ A2 ⊆ A3 ⊆ · · · )

Equivalently, A is a d-system if

• ∅ ∈ A

• A ∈ A =⇒ Ac ∈ A

• {An} ∈ A and An’s disjoint, then
⋃

nAn ∈ A

Proof is on Example Sheet 1.

Fact (Example Sheet 1): A π-system A which is also a d-system is actually a σ-
algebra.

Lemma (Dynkin’s lemma). Let A be a π-system. Then any d-system that contains
A, contains also σ(A).

Proof. Define
D =

⋂
D a d-system

D ⊇ A

D

Then D is itself a d-system (proof same as in σ(A)). We will show that D is also a
π-system, then we are done.

To achieve this, define

D′ = {B ∈ D : B ∩A ∈ D ∀A ∈ A}

Then A ⊆ D′ (as A is a π-system). D′ is in fact a d-system (B ∈ A, then for any A ∈ A,
B ∩A ∈ A as A is a π-system, hence B ∈ D). Fix A ∈ A.

• Then E ∩A = A ∈ A ⊆ D. So E ∈ D′.

• If B1 ⊆ B2, and B1, B2 ∈ D′, then (B2 \B1)∩A = (B2∩A)\ (B1∩A) ∈ D. But by
definition, as B1, B2 ∈ D′, we get B1 ∩A,B2 ∩A ∈ D. Also, B1 ∩A ⊆ B2 ∩A and
D is a d-system, so (B2∩A)\(B1∩A) ∈ D. So (B2\B1)∩A ∈ D, i.e. B2\B1 ∈ D′.
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• Finally, if {Bn} ∈ D′ and Bn ↑ B =
⋃

nBn, then Bn∩A ∈ D and (Bn∩A) ↑ (B∩A)
and D is a d-system, so B ∩A ∈ D. So B ∈ D′.

So D′ is a d-system. Also, D′ ⊆ D. But also, A ⊆ D′ and D′ is a d-system, so D ⊆ D′

(by minimality of D). So D = D′, i.e. for all B ∈ D and A ∈ A, B ∩A ∈ D (∗). Now we
can repeat this argument one level higher. Define

D′′ = {B ∈ D : B ∩A ∈ D ∀A ∈ D}

Then A ⊆ D′′ (by (∗)). Then check, as before, that D′′ is a d-system. So D′′ = D. But
then (by the definition of D′′), ∀B ∈ D, A ∈ D =⇒ B ∩ A ∈ D, i.e. D is a π-system.
So D is a σ-algebra containing A, hence D ⊇ σ(A) (check that ∅ ∈ D).

Now we get the uniqueness theorem.

Theorem (Uniqueness of Extension). Let µ1, µ2 be some measures on (E, E) with
µ1(E) = µ2(E) < ∞. Suppose that µ1 = µ2 on A for some π-system A that
generates E (i.e. σ(A) = E). Then µ1 = µ2 on E .

Proof. Consider D = {A ∈ E : µ1(A) = µ2(A)}. Then, by hypothesis, A ⊆ D. Also, A
is a π-system. So enough to show that D is a d-system (by Dynkin’s lemma, σ(A = E ⊆
D ⊆ E , so D = E).

• ∅ ∈ D since µ1(∅) = µ2(∅) = 0.

• A ∈ D =⇒ µ1(A) = µ2(A). So µ1(A
c) = µ1(E) − µ1(A) = µ2(E) − µ2(A) =

µ2(A
c). So Ac ∈ D.

• {An} ∈ D disjoint, then µ1 (
⋃

nAn) =
∑

µ1(An) =
∑

µ2(An) = µ2 (
⋃

nAn). So⋃
nAn ∈ D.

So D is a d-system.

Question: How to show all sets of a σ-algebra E generated by E has a certain property
P?

G = {A ⊆ E : A has the property P}

and all elements of A has the property P. Possible methods:

(1) Show that G is a σ-algebra.

(2) Show that G is a d-system and A is a π-system, and use Dynkin’s lemma.

(3) MCT (monotone convergence theorem?)
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Definition (Borel Sets). Let E be a Hausdorff topological space. The σ-algebra
generated by the set of open sets, i.e. σ(A) where A = {A ⊆ E : A open} is called
the Borel σ-algebra B(E) of E. B(R) is written as B. A measure µ on (E,B(E))
is called a Borel measure on E. If µ(K) < ∞ for all K compact, then µ is called
a Radon measure on E. If µ(E) = 1, µ is called a probability measure on E, and
(E, E , µ) is called a probability space (usually use (Ω,F ,P)). If µ(E) < ∞, µ is a
finite measure on E. If ∃(En) in E such that µ(En) < ∞ for all n and E =

⋃
nEn,

then µ is called a σ-finite measure (the Uniqueness of Extension holds for σ-finite
measures).

Start of

lecture 4 Goal: one of the main goals of this course is to construct a Borel measure µ on B(Rd)
such that such that

µ

(
d∏

i=1

(ai, bi)

)
=

d∏
i=1

(bi − ai) ai < bi

corresponding to the usual notion of volume of rectangles. This measure will be called
the Lebesgue measure after H. Lebesgue (1902).

We’ll first look at d = 1.

Theorem. There exists a unique Borel measure µ on R such that ∀a, b ∈ R with
a < b, µ((a, b]) = b− a(†). µ is called the Lebesgue measure on R.

Proof. Existence: Consider the ring A of finite unions of disjoint intervals of the form

A = (a1, b1] ∪ (a2, b2] ∪ · · · ∪ (an, bn] a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ an ≤ bn

Note that σ(A) = B (Example Sheet) (as all open intervals in σ(A) and open intervals
generate open sets).

Define for such A ∈ A,

µ(A) =

n∑
i=1

(bi − ai)

This agrees with (†) for (a, b]. This is additive and well-defined (check). (Note that this
is important since representations aren’t unique, for example (0, 2] = (0, 1] ∪ (1, 2]). So,
the existence of µ on B follows from Caratheodory’s theorem if we can show that µ is
countably additive.

11
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Remark. (Example Sheet) µ a finitely additive set function on a ring A. Then µ
is countably additive iff

• An ↑ A, An ∈ A =⇒ µ(An) ↑ µ(A).

• In addition, if µ is finite and An ↓ A, (An), A ∈ A, then µ(An) ↓ µ(A).

An = [n,∞), An ↓ ∅.

So, by example sheet, showing µ is countably additive on A is equivalent to showing the
following: If An ∈ A, An ↓ ∅, then µ(An) ↓ 0, A1 ⊇ A2 ⊇ · · · . (µ finitely additive on a
ring A. THen µ is countably additive iff An ↓ ∅, µ(A1) < ∞ implies µ(An) ↓ 0).

We shall prove this by contradiction. Suppose ∃Bn ∈ A, Bn ↓ ∅, but for all n, µ(Bn) ≥
2ε > 0 for some ε > 0. For each n, Bn can be approximated from within by Cn ∈ A
such that Cn ⊆ Bn and µ(Bn \ Cn) ≤ ε/2n. For example,

Bn = (a1, b1] ∪ (a2, b2]

Cn =
(
a1 +

ε

2 · 2n
, b1

]
∪
(
a2 +

ε

2 · 2n
, b2

]
Then

µ(bn \ C1 ∩ C2 ∩ · · · ∩ Cn) ≤ µ

(
n⋃

i=1

(Bi \ Ci

)

≤
n∑

i=1

µ(Bi \ Ci)

≤
n∑

i=1

ε

2i

= ε

Since µ(Bn) ≥ 2ε and µ(Bn \ (C1 ∩ · · · ∩ Cn)) ≤ ε,

=⇒ µ(C1 ∩ · · · ∩ Cn) ≥ ε =⇒ C1 ∩ · · · ∩ Cn 6= ∅

So Kn = C1 ∩ · · · ∩ Cn 6= ∅. (Kn) is a sequence of decreasing bounded closed sets, each
non-empty, so

⋂
nKn 6= ∅ (by completeness of R). But then ∅ 6=

⋂
nKn ⊆

⋂
nBn = ∅,

which is a contradiction.

Uniqueness: For uniqueness, suppose µ, λ are measures on B such that (†) holds for
sets of the form (a, b]. Define the truncated measures, for A ∈ B,

µn(A) = µ(A ∩ (n, n+ 1]) and λn(A = λ(A ∩ (n, n+ 1])

12



Then µn and λn are probability measures on B and µn = λn on the π-system of intervals
of the form (a, b], a < b, which generates B. So by Uniqueness of Extension, λn = µn on
B. Hence for all A ∈ B,

µ(A) = µ

(⋃
n

(A ∩ (n, n+ 1])

)
=
∑
n

µ(A ∩ (n, n+ 1])

=
∑
n

µn(A)

=
∑
n

λn(A)

= λ(A)

Remark.

1. A set B ∈ B is called a Lebesgue (λ) null set if λ(B) = 0. Any singleton set

{x} =
⋂
n

(
x− 1

n
, x

]
is a Lebesgue-null set since λ({x}) = limn→∞ λ((x− 1/n, x]) = limn→∞ 1/n =
0. In particular, λ((a, b)) = λ([a, b]) = λ([a, b)) = b− a. Any countable set Q
satisfies λ(Q) = 0. There exist uncountable sets C with λ(C) = 0 (for example
the Cantor set).

2. Lebesgue measure is translation invariant: for x ∈ R, and B ∈ B, define
B + x = {b + x : b ∈ B}, and define λx(B) = λ(B + x). Then λx((a, b]) =
λ((a, b] +x) = λ((a+x, b+x]) = b− a = λ((a, b]). So λx = λ on the π-system
of intervals, and hence λx = λ on B. Question: Is the Lebesgue measure the
only such translation invariant measure on B?

3. Lebesgue-measurable sets: Caratheodory extends λ from A to not just σ(A) =
B, but actually to M, the set of outer measurable sets. M ⊇ B, but how large
is M?

M = {A ∩N : A ∈ B, N ⊆ B,B ∈ B, λ(B) = 0}

(Lebesgue σ-algebra)

Start of

lecture 5
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We now show that B ( P(R) (in fact, MLeb ( P(R)). Vitali (1905) first showed such a
set exists.

Consider E = [0, 1) with addition modulo 1. Then Lebesgue measure is invariant under
this operation, i.e.

λ(B) = λ(B + x)

where adding is done modulo 1.

Question: If B ∈ B, why is B + x ∈ B? G = {B ∈ B : B + x ∈ B}.

For x, y ∈ [0, 1), define the equivalence relation x ∼ y if x − y ∈ Q ∩ [0, 1) (Q ∩ [0, 1) a
subgroup on [0, 1)). Using the Axiom of Choice (uncountable version), we can select a
representative from each equivalence class and form the set S. We will show S 6∈ B.

The sets (S + q)q∈Q∩[0,1) are all disjoint and their union is [0, 1), i.e.

[0, 1) =
⋃

q∈Q∩[0,1)

(S + q)

Now, if S were a Borel set, so would S + q be, and by translation invariance of λ and
countable additivity of λ,

1 = λ([0, 1]) =
∑

q∈Q∩[0,1)

λ(S + q) =
∑

q∈Q∩[0,1)

λ(S)

giving a contradiction. So S 6∈ B.

Remark. Extend this proof to show that S 6∈ MLeb.

Theorem (Banach-Kuratowski 1929). Assuming the continuum Hypothesis, there
does not exist a measure µ on P([0, 1]) such that

µ([0, 1]) = 1 and µ({x}) = 0 ∀x

Proof. Dudley (appendix).

Henceforth, whenever we are on a metric space E, we will work with B(E), which will
be perfectly satisfactory.
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1.3 Probability Measures

We usually use (Ω,F ,P) to denote a probability space.

• Ω is the set of possible outcomes of the experiment / sample space.

• F is the set of events.

• P(Ω) = 1, P(A) for A ∈ F is the probability that the event occurs.

Kolmogorov (1933) set the axioms of probability theory.

Axioms:

(1) P(Ω) = 1, P(∅) = 0.

(2) P(E) ≥ 0 ∀E ∈ F .

(3) P (
⋃

nAn) =
∑

n P(An) for all An ∈ F disjoint, i.e. P is a measure.

Remark.

• P (
⋃

nAn) ≤
∑

n P(An).

• An ↑ A =⇒ P(An) ↑ P(A).

• An ↓ A =⇒ P(An) ↓ P(A).

Definition (Independence). We say (Ai, i ∈ I), Ai ∈ F , are independent, if for all
finite sets J ⊆ I, we have

P

⋂
j∈J

Aj

 =
∏
j∈J

P(Aj)

Say that the σ-algebras (Ai, i ∈ I), Ai ∈ F for all i, are independent, if (Ai, i ∈ I)
is independent for all Ai ∈ Ai.

Theorem. Let A1, A2 be π-systems contained in F such that

P(A1 ∩A2) = P(A1)P(A2) ∀A1 ∈ A1, A2 ∈ A2

15



Proof. Fix A1 ∈ A1, and define for A ∈ σ(A2):

µ(A) = P(A1 ∩A), ν(A) = P(A1)P(A).

Then µ and ν are finite measures, and they agree on the π-system A2. Hence, by
Uniqueness of Extension,

µ(A) = ν(A) ∀A ∈ σ(A2) (∗)

Repeat the same argument, now by fixing A2 ∈ σ(A2).

µ′(A) = P(A ∩A2), ν ′(A) = P(A)P(A2) ∀A ∈ σ(A1)

By (∗), µ′ = ν ′ on A1, hence by Uniqueness of Extension, µ′ = ν ′ on σ(A1).

1.4 Borel-Cantelli Lemmas

Given a sequence of events (An, n ∈ N), we may ask for the probability that infinitely
many of them occur.

Definition. For An ∈ F ∀n, define

lim supAn =

∞⋂
n=1

⋃
m≥n

An = {An infinitely often}

lim inf An =
∞⋃
n=1

⋂
m≥n

An = {An eventually}

Lemma (Borel-Cantelli Lemma 1). If
∑

P(An) < ∞, then P(An infinitely often) =
0.

Proof. Fix any n ∈ N. Then

0 ≤ P(An infinitely often) ≤ P

 ⋃
m≥n

Am

 ≤
∑
m≥n

P(Am)

Take limit as n → ∞.

Start of

lecture 6
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Example.

{An infinite often} = {infinitely many of the {An} occur} =
∞⋂
n=1

⋃
m≥n

Am

So if An = {H in the n-th toss}, then

{An infinitely often} = {infinitely many heads}

Remark. The lemma holds for any measure µ (not just probability measures).

Lemma (Borel Cantelli Lemma 2). Assume the events (An) are independent. Then
if
∑

n P(An) = ∞, then P(An infinitely often) = 1.

Proof. We will use the inequality 1−a ≤ e−a for all a ≥ 0. Now, (An)n∈N are independent
so (Ac

n)n∈N are independent. So, for all n and N ≥ n,

0 ≤ P

(
N⋂

m=n

Ac
m

)
=

N∏
m=n

P(Ac
m) =

N∏
m=n

(1− P(Am)) ≤ e−
∑N

m=n P(Am)

Taking N → ∞,

0 ≤ P

( ∞⋂
m=n

Ac
m

)
≤ lim

N→∞
P

(
N⋂

m=n

Ac
m

)
≤ lim

N→∞
e−

∑N
m=n P(Am) = lim

n→∞
e−

∑∞
m=n P(Am) = 0

So,

P

( ∞⋂
m=n

Ac
m

)
= 0

i.e.

P

( ∞⋃
m=n

Am

)
= 1 ∀n (∗)⋃∞

m=nAm =: Bn. Then

Bn ↓
⋂
n

Bn =
⋂
n

⋃
m≥n

Am = {An infinitely often}.

So, as P(Bn) = 1 for all n (by (∗)), so P(An infinitely often) = limn→∞ P(Bn) = 1.

Remark. If (An)n∈N independent, then {An infinitely often} is a 0/1 event. For
all “tail events”, the probability is 0/1 (Kolmogorov 0− 1 law, will prove later).
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2 Measurable Functions

Definition (measurable function). Let (E, E) and (G,G) be 2 measurable functions.
A map f : E → G is called measurable if f−1(A) ∈ E ∀A ∈ G, where f−1(A) is the
pre-image of A under f , i.e.

f−1(A) = {x ∈ E : f(a) ∈ A}.

When (G,G) = (R,B(R)), we simply say f is measurable. If E is a topological space
and E = B(E), then f is called Borel.

Remark. Preimages preserve set operations:

f−1

(⋃
i

Ai

)
=
⋃
i

f−1(Ai) and f−1(G \A) = E \ f−1(A).

(Checking these is an exercise).

So, {f−1(A) : A ∈ G} is a σ-algebra on E and {A ⊂ G : f−1(A) ∈ E} is a σ-algebra
on G. If G = σ(A) and f−1(A) ∈ E ∀A ∈ A, then {A ⊂ G : f−1(A) ∈ E} is a
σ-algebra containing A, hence it contains σ(A) = G. So f is measurable.

In particular, when G = R, G = B, then B = σ(A) where A = {−∞, y] : y ∈ R},
so f is Borel measurable if and only if {x ∈ E : f(x) ≤ y} ∈ E ∀y ∈ R. If E is a
topological space, f : E → R continuous, then for A = {U : U open}, f−1(E) ∈ E
(as f−1(U) is open). So f is Borel-measurable.

Example. For A ⊆ E, the indicator function

1A(x) =

{
1 x ∈ A

0 x 6∈ A

is measurable if and only if A ∈ E .

Composition of measurable functions is measurable (easy exercise).

For a family of functions fi : E → G, i ∈ I, we can make all (fi) measurable with
respect to the σ-algebra

E = σ(f−1
i (A) : A ∈ G, i ∈ I).

E is called the σ-algebra generated by {fi}i∈I .

18



Proposition. If f1, f2, . . . are measurable R-valued, then

f1 + f2, f1f2, inf
n

fn, sup
n

fn, lim inf
n

fn, lim sup
n

fn

are all measurable.

Proof. See Example Sheet 1.

Theorem (Monotone Class Theorem). Let (E, E) be a measurable space and A a
π-system generating E . Let V be a vector space of bounded functions f : E → R
such that

(1) 1 ∈ V and 1A ∈ V ∀A ∈ A

(2) If fn ∈ V ∀n and f bounded with 0 ≤ fn ↑ f , then f ∈ V.

Then V contains all bounded measurable functions.

Proof. Let D = {A ∈ E : 1A ∈ V}. Then D is a d-system. This is because 1 = 1E ∈ D,
1B\A = 1B −A ∈ V, if A ⊆ B, as V is a vector space. If An ∈ D, i.e. 1An ∈ V, An ↑ A,
then 1An ↑ 1A so by (2), 1A ∈ V, so A ∈ D.

It contains the π-system A so by Dynkin’s lemma, contains σ(A) = E , so D = E , i.e.
1A ∈ V ∀A ∈ E . Since V is a vector space, it contains all finite linear combinations of
indicators of measurable sets. So,

fn = 2−n b2nfc ∈ V.

Then

fn(x) = 2−n b2nf(x)c

= 2−n
n∑

j=0

j1{2nf(x)∈[j,j+1)}

= 2−n
Kn∑
j=0

j1{f−1([j/2n,(j+1)/2n))}

for some finite Kn since f is bounded. Then fn ≤ f ≤ fn + 2−n. So |fn − f | → 0 as
n → ∞ and fn ↑ f .

So 0 ≤ fn ↑ f, fn ∈ V, and f is bounded non-negative. So f ∈ V by (2). Finally, for any
f bounded measurable, f = f+ − f−, where f+ = max(f, 0), f− = max(−f, 0). f+, f−

are bounded non-negative measurable and ∈ V. So since V is a vector space, f ∈ V.

19

http://www.dpmms.cam.ac.uk/study/II/Probability%2BMeasure/


Start of

lecture 7 Definition (image / measure). Let (E, E) and (G,G) be 2 measurable spaces, f :
E → G measurable, and µ a measure on (E, E). Then µ induces an image / pull-
forward measure V on G given by V = µ ◦ f−1, i.e. V(A) = µ(f−1(A)) ∀A ∈ G. This
is well-defined and V is a measure (Example Sheet 1).

Note. Starting from Lebesgue measure, we can get all probability measures (Radon
measures) in this way.

Lemma. Let g : R → R be non-constant, right continuous, and increasing. Set
G(±∞) = limx→±∞ g(x) and I = (g(−∞), g(∞)). Define f : I → R by f(x) =
inf{y ∈ R : g(y) ≥ x}. Then f is left continuous, increasing and ∀x ∈ I, y ∈ R,

f(x) ≤ y ⇐⇒ x ≤ g(y) (f(x) > y ⇐⇒ x > g(y))

f is called a generalised inverse of g (if I = (0, 1) then f is the quantile function).

Proof. Fix x ∈ I. Define Jx = {y ∈ R : g(y) ≥ x}. Then Jx is non-empty and
bounded below and hence f(x) ∈ R. Since g if increasing, if y ∈ Jx and y′ ≥ y,
then g(y′) ≥ g(y) ≥ x, i.e. y′ ∈ Jx. Since g is right continuous, if yn ∈ Jx, yn ↓ y,
then g(y) = limn→∞ g(yn) ≥ x, i.e. y ∈ Jx. So Jx = [f(x),∞). So x ≤ g(y) ⇐⇒
y ∈ Jx ⇐⇒ f(x) ≤ y. If x ≤ x′, we have Jx ⊇ Jx′ (as y ∈ Jx ⇒ y ∈ Jx′ , as
y ∈ J ′

x ⇐⇒ g(y) ≥ x′ =⇒ g(y) ≥ x =⇒ y ∈ Jx). So [f(x),∞) ⊇ [f(x′),∞), so
f(x) ≤ f(x′), i.e. f is increasing.

To show f is left continuous: Let xn ↑ x. Then Jx =
⋂

n Jxn , i.e. [f(x),∞) =⋂
n[f(xn),∞), so f(xn) → f(x).
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Theorem. Let g : R → R as in the lemma. Then there exists a unique Radon
measure µg on R such that ∀a, b ∈ R with a < b,

µg((a, b]) = g(b)− g(a)

Also, every Radon measure can be obtained in this way.

Remark. The measure µg is called the Lebesgre-Stieljtes measure associated with
g.

Proof. Define I, f as in the lemma, and let λ be the Lebesgue measure on I. f is Borel
measurable since

f−1((−∞, z]) = {x ∈ I : f(x) ≤ z} = {x ∈ I : x ≤ g(z)} = (g(−∞), g(z)] ∈ B

and {(−∞, z] : z ∈ R} generate B, hence f is measurable.

Thus, the induced measure µg = λ ◦ f−1 exists on B, where µg(A) = λ(f−1(A)). Then

µg((a, b]) = λ(f−1(a, b])

= λ({x : f(x) > a, f(x) ≤ b})
= λ({x : x > g(a), x ≤ g(b)})
= λ((g(a), g(b)])

= g(b)− g(a)

By the Uniqueness of Extension for σ-finite measures, µg is uniquely determined.

Conversely, if V is any Radon measure on R, define

g : R → R as g(y) =

{
V((0, y]) y ≥ 0

−V((y, 0]) y < 0

V Radon implies g : R → R. Easy to check g is right continuous (y ≥ 0, yn ↓ y, then
(0, yn] ↓ (0, y] and then V((0, yn]) ↓ V((0, y]) by countably additivity, and for y < 0, if
yn ↓ y then use a similar argument). So g is increasing. Lastly,

V((a, b]) = g(b)− g(a)

(check cases 0 ∈ (a, b) and 0 6∈ (a, b).
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Example. Fix x ∈ R. Take g = 1[x,∞)

Then µg = δx: Dirac measure at x, i.e.

δx(A) =

{
1 x ∈ A

0 x 6∈ A
∀A ∈ B

2.1 Random Variables

Definition (random variable). Let (Ω,F ,P) be a probability space and (E, E) a
measurable space. Let X : Ω → E a measurable function. Then X is called a
random variable in E.

X models a “random” outcome of an experiment. For example Ω = {H,T}, X :
# heads : Ω → {0, 1}.
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Definition (distribution). The image measure µX = P ◦ X−1 is called the law or
distribution of X. It is a measure on (E, E).

If E = R, µX is uniquely determined by its values on the π-system {(−∞, x] : x ∈ R}
given by

FX(x) := µX((−∞, x]) = P ◦X−1((−∞, x]) = P(ω ∈ Ω : X(ω) ≤ x) = P(X ≤ x).

The function FX is called the distribution function of X, because it characterises
the distribution of X.

By properties of probability measure:

(1) FX is increasing.

(2) FX is right continuous (xn ↓ x =⇒ (−∞, xn] ↓ (−∞, x] hence countability additiv-
ity of P ◦X−1)

(3) FX(−∞) = limx→−∞ FX(x) = 0, FX(∞ = limx→∞ F (x) = 1.

Any F : R → [0, 1] satisfying all these properties is called a distribution function.

Start of

lecture 8 Given any distribution F , there exists a function X such that F = FX , i.e. F (x) =
FX(x) = P(X ≤ x) ∀x (P(ω ∈ Ω : X(ω) ≤ x).

Proof. Let Ω = (0, 1) and P the Lebesgue measure λ|(0,1). Let F be any distribution
function. Then F is ↑, right continuous, so we can define

X(ω) = inf{x : ω ≤ F (x)} : (0, 1) → R

Since X is a measurable function, X is a random variable.

∀x, FX(x) = P(≤ x) = P(ω ∈ Ω : X(ω) ≤ x) = P(ω ∈ Ω : ω ≤ F (x)) = P((0, F (x)]) = F (x)

Definition (Independent variables). A (countable) family of random variables
(Xi, i ∈ I) is said to be independent, if the family of σ-algebras (σ(Xi), i ∈ I) is
independent (where recall σ(X) = σ{X−1(A) : A ∈ E} for X : Ω → (E, E)).
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Proposition. For a sequence of random variables (Xn, n ∈ N), this sequence is
independent if

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) · · ·P(Xn ≤ xn) ∀x1, . . . , xn ∈ R, n ∈ N.

Proof. Example Sheet 1

2.2 Rademacher functions

Question: Given a distribution function F , we know there exists a random variable X
corresponding to it. But given an infinite sequence of distribution functions F1, F2, . . .
does there exist independent random variables (X1, X2, . . .) corresponding to them?

Let (Ω,F ,P) = ((0, 1),B(0.1), λ|(0,1)). Any ω ∈ Ω has a binary expansion:

ω = 0 · ω1︸︷︷︸
1
2

ω2︸︷︷︸
1
4

ω3︸︷︷︸
1
8

· · · , ωi ∈ {0, 1}

If we exclude representations ending in an infinite sequence of 0s, then the representation
is unique.

Define Rn : Ω → {0, 1} by Rn(ω) = ωn, i.e. Rn = 1{ωn=1} So

R1 = 1(1/2,1], R2 = 1{ω2=1} = 1{ω1=0,ω2=1}+1{ω1=1,ω2=1} = 1(1/4,1/2)+1(3/4,1], R3 = · · ·

So Rns are finite sums of indicators of intervales, hence measurable, i.e. they are random
variables. They are called Rademacher functions.

Claim: Ri are IID Ber
(
1
2

)
. P(Rn = 1) = 1

2 = P(Rn = 0) ∀n.

P(R1 = x1, R2 = x2, . . . , Rn = xn) = 2−n = P(R1 = x1) · · ·P(Rn = xn)

and hence (Ri)i∈N independent.

Now, choose a bijection m : N2 → N and define Yk,n = Rm(k,n) and set Yn =
∑∞

k=1 2
−kYk,n

(converges on |Yk,m| ≤ 1).

Claim: (Yn)n are IID U(0, 1) (i.e. µYn = λ|(0,1) and (Yn) are independent). independent
is easy (Y1 is measurable function of Y1,1, Y2,1, . . ., similarly Y2 is a measurable function of
Y1,2, Y2,2, . . ., but note that these two lists are independent). Any measurable functions
of independent random variables are independent (check!).
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The law of Yn is identified on the π-systemof intervals
(

i
2m , i+1

2m

]
, i = 0, 1, . . . , 2m−1,m ∈

N. And

P
(

i

2m
< Yn ≤ i+ 1

2m

)
= P

(
i

2m
<

∞∑
K=1

2−kYk,n ≤ i+ 1

2m

)

= P (Y1,n = y1, . . . , Ym,n = ym) where i

2m
= 0 · y1y2 · · · ym

=

m∏
i=1

P(Yi,n = yi)

= 2−m

= λ

(
i

2m
,
i+ 1

2m

]
Hence µYn is λ|(0,1), i.e. Y1 are IID U(0, 1). Then, as before, set

Gn(x) = F−
n (x) = inf{y : x ≤ Fn(y)}

then Gn’s are Borel functions. Set Xn = Gn(Yn), n = 1, 2, . . .. Then as before FXn = Fn

and (Xn) are independent (as (Yn)N are independent).

2.3 Convergence of Random Variables

Definition (almost everywhere). (E, E , µ) be a measure space. Let A ∈ E be
defined by some property. We say the property holds almost everywhere (a.e /
µ.a.e) if µ(Ac) = 0. If µ is a probability measure, we say almost surely (a.s) if
P(Ac) = 0, i.e. P(A) = 1 (w.p.1).

Thus if (fn), f , (E, E , µ) → (R,B) measurable, we say

• fn → f almost everywhere if

µ({x ∈ E : fn(x) 6→ f(x)}) = 0

for P, almost surely P({ω ∈ Ω : Xn(ω) → X(ω)}) = 1.

• fn → f in (µ-)measure if ∀ε > 0,

µ({x ∈ E : |fn(x)− f(x)| > ε}) → 0

as n → ∞, and in (P)-probability if P(|Xn −X| > ε) → 0.

Theorem. Let (fn) be a sequence of measurable functions. Then if µ(E) < ∞,
then fn → 0 almost everywhere =⇒ fn → 0 in µ-measure. (fn = 1(n,∞) and the
Lebesgue measure then fn → 0 almost everywhere but µ(|fn| > ε) = ∞ ∀n).
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Proof. Fix ε > 0. Suppose fn → 0 almost everywhere. Then

µ(|fn| ≤ ε) ≥ µ

( ∞⋂
m=1

{|fm| ≤ ε}

)
↑ µ(|fn| ≤ eventually)

≥ µ(fn
n→∞−→ 0)

= µ(E)

< ∞

An =

∞⋂
m=n

{|fm| ≤ ε} ↑
∞⋃
n=1

∞⋂
m=n

{|fm| ≤ ε}

Hence
lim
n→∞

µ(|fn| ≤ ε) = µ(E)

So, limn→∞ µ(|fn| > ε) = 0.

Start of

lecture 9 Theorem. If fn
µ−→ 0, then ∃ subsequence (nk) such that fnk

→ 0 µ.a.e.

Proof. Suppose fn
µ−→ 0. Choosing ε = 1

k , then µ
(
|fn| > 1

l

)
→ 0 as n → ∞. We

can get nk such that µ
(
|fnk

| > 1
k

)
< 1

k2
. We can choose nk+1 in the same way (i.e.

µ
(
|fnk+1

| > 1
k+1

)
< 1

(k+1)2
, and such that nk+1 > nk).

So we get a subsequence (nk) such that

µ

(
|fnk

| > 1

k

)
<

1

k2

Also,
∑

j
1
k2

< ∞.

So
∑

k µ
(
|fnk

| > 1
k

)
< ∞. So by Borel-Cantelli Lemma 1,

µ

|fnk
| > 1

k
i.o︸ ︷︷ ︸

fnk
6→0

 = 0

=⇒ µ(fnk
6→ 0) = 0

i.e. fnk
→ 0 µ.a.e.
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Remark. Going to a subsequence is necessary, i.e. convergence in µ measure 6 =⇒
µ.a.e convergence.

For example, let (An)n∈N be independent events such that P(An) =
1
n . Let Xn =

1An . Then Xn
P−→ 0 (as P(|Xn| > ε) = P(An) =

1
n → 0 ∀ε > 0). But

∑
n P(An) =

∞, i.e.
∑

n P(|Xn| > ε) = ∞ and {|Xn| > ε} are independent. So by Borel Cantelli
Lemma 2 =⇒ P(|Xn| > εi.o) = 1, hence Xn 6→ 1 almost everywhere.

Definition (Convergence in distribution). For X, (Xn)n a sequence of random
variables, we say Xn

d−→ X (Xn converges to X in distribution), if

FXn(t)
n→∞−→ FX(t) ∀t such that FX(t) is continuous

(this definition does not require (Xn) to be defined on the same probability space).

Remark. If Xn
P−→ X, then Xn

d−→ X (proof is on Example Sheet 2).

Example. (Xn)n∈N be IID Exp(1), i.e. P(xn > x) = e−x ∀n ∈ N, x ≥ 0. Find a
deterministic function g : N → R such that almost surely

lim sup
Xn

g(n)
= 1

For α > 1, P(Xn > α log n) = e−α logn = n−α. So
∑

n P(Xn > α log n) < ∞ if and
only if α > 1.

For any ε > 0,
∑

n P(Xn > (1 + ε) log n) < ∞, so by Borel-Cantelli Lemma 1,

P
(

Xn

log n
> 1 + ε i.o

)
= 0

Also,
∑

n P(Xn > log n) = ∞, also {Xn > log n} are independent events (as (Xn)
independent), so by Borel Cantelli Lemma 2,

P
(

Xn

log n
> 1 i.o

)
= 1

So
P
(
lim sup

Xn

log n
= 1

)
= 1.
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Definition (Tail events). Let (Xn : n ∈ N) be a sequence of random variables.
Define

τn = σ{Xn+1, Xn+2, . . .}

and define τ =
⋂

n∈N τn.

Then τ is a σ-algebra called the tail σ-algebra (contains events that depend only on
the “limiting behaviour” of the sequence).

Theorem (Kolmogorov 0−1 law). Let (Xn)n be a sequence of independent random
variables. Then for the tail σ-algebra τ , if A ∈ τ , then P(A) = 0 or P(A) = 1. If
Y : (Ω, τ) → R is measurable, then Y is almost surely convergent.

Proof. Let Fn = σ(X1, . . . , Xn). Then Fn is generated by the π-system of sets

A = {X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn} x1, . . . , xn ∈ R.

and τn = σ(Xn+1, . . .) is generated by the π-system of events

B = {Xn+1 ≤ xn+1, . . . , Xn+k ≤ xn+k}, xn+1, . . . ,∈ R, k ∈ N

By by independence P(A ∩ B) = P(A)P(B) for all such A and B. Hence, by an earlier
theorem, Fn and τn are independent. But τ ⊆ τn, so Fn and τ are independent for all
n.

Now, consider
⋃

nFn (F1 ⊆ F2 ⊆ · · · ) is a π-system that generates F∞ := σ(Xn, n ∈ N).
But

⋃
nFn and τ are independent, so by the theorem again, F∞ and τ are independent.

But τ ⊆ F∞, so for any A ∈ τ , A ∈ F∞,

P(A) = P( A︸︷︷︸
∈τ

∩ A︸︷︷︸
∈F∞

) = P(A)P(A) = P(A)2,

i.e. P(A) = 0 or P(A) = 1.

Finally, if Y is τ measurably, for any y ∈ R, {Y ≤ y} ∈ τ , so P(Y ≤ y) = 0 or 1. Then
c = inf{y : P(Y ≤ y) = 1}, then P(Y = c) = 1. Xi IID, EX < ∞, then

lim sup

∑n
i=1Xi

n
, lim inf

∑n
i=1Xi

n

are constants almost surely.
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3 Integration

For (E, E , µ) a measure space, f : T → R measurable and f ≥ 0, we shall define the
integral of f and write it as

µ(f) =

∫
E
fdµ =

∫
E
f(x)dµ(x)

When (E, E , µ) = (R,B, λ), we write it as
∫
f(x)dx.

For (E, E , µ) = (Ω,F ,P), and X a random variable, we define its Expectation

E(X) =

∫
Ω
XdP =

∫
Ω
= X(ω)dP (ω)

To start, we say f : E → R is simple if f =
∑m

k=1 aK1Ak
, 0 ≤ ak < ∞, Ak ∈ E ∀k,m ∈ N.

Define for such simple f ,

µ(f) =

m∑
k=1

akµ(Ak)

(where 0 · ∞ = 0). This is well defined (see Example Sheet 2). Check for f, g simple,
α, β ≥ 0,

(a) µ(αf + βg) = αµ(f) + βµ(g)

(b) f ≤ g =⇒ µ(f) ≤ µ(g)

(c) f = 0 almost everywhere =⇒ µ(f) = 0.

Start of

lecture 10 Example. If Xn
P−→ X, then Xn

d−→ X. Xn
P−→ X but Xn 6→ X almost surely

((0, 1], B, λ).
f1 = 1(0, 1

2
], f2 = 1( 1

2
,1]

f3 = 1(0, 1
3
], f4 = 1( 1

3
, 2
3
], f5 = 1( 2

3
,1]

f6 = 1(0, 1
4
], . . .

Then fn → 0 in λ-measure, but fn 6→ 0 λ almost everywhere. For any x ∈ (0, 1],
(fn(x)) has an infinite sequence of 1s, hence fn(x) 6→ 0.

Recall, for f simple, i.e. f =
∑m

k=1 ak1Ak
, ak ≥ 0, Ak ∈ E , then

µ(f) =

∫
fdµ =

m∑
k=1

akµ(Ak)

(recall the properties given last lecture).
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Definition (Measure of function). For f : E → R measurable, f ≥ 0, define

µ(f) = sup{µ(g) : g simple, g ≤ f}

Clearly, if 0 ≤ f1 ≤ f2, then µ(f1) ≤ µ(f2).

For general f : E → R measurable, f = f+ − f−, where f+ = max(f, 0), f− =
max(−f, 0) and |f | = f+ + f−.

Definition (Integrable function). We say f is integrable if µ(|f |) < ∞ and then
define

µ(f) = µ(f+)− µ(f−)

(µ(|f |) = µ(f+) + µ(f−), hence |µ(f)| ≤ µ(|f |)).

If one of µ(f+) or µ(f−) is ∞ and the other is finite, we define µ(f) to be ∞ or −∞
respectively (though f is not integrable).

• xn ↑ x to mean xn ≤ xn+1 ∀n, xn → x

• fn ↑ f to mean fn(x) ≤ fn+1(x) ∀x ∈ E and fn(x) → f(x).

Theorem (Monotone Convergence Theorem). Let (fn)n, f : (E, E , µ) → R measur-
able and non-negative, and suppose fn ↑ f . Then µ(fn) ↑ µ(f).

Proof. Recall µ(f) = sup{µ(g) : g ≤ f, g simple}. Let M = supn(µ(fn)), then µ(fn) ↑
M . Need to show that M = µ(f).

Since fn ≤ f , µ(fn) ≤ µ(f), so by taking sup, M ≤ µ(f).

Now need to show M ≥ µ(f). So it is enough to show M ≥ µ(g) for all g simple, g ≤ f .
Let g =

∑m
k=1 ak1Ak

≤ f . Assume without loss of generality, that (Ak)s are disjoint.
Define the approximation gn as

gn(x) = (2−n b2nfn(x)c) ∧︸︷︷︸
min

g(x)

So gn is simple, gn ≤ fn ≤ fn ↑ f , so gn = fn ∧ g ↑ f ∧ g = g, i.e. gn ↑ g, gn simple,
gn ≤ fn.

Fix ε ∈ (0, 1) and consider the sets

Ak(n) = {x ∈ Ak : gn(x) ≥ (1− ε)ak}
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Now, g = ak on the set Ak, and gn ↑ g, so Ak(n) ↑ Ak, hence µ(Ak(n)) ↑ µ(Ak). Also,

1Ak(n)(1− ε)ak ≤ 1Ak(n)gn ≤ 1Ak
gn

So as µ(f) is increasing, we have,

µ(1Ak(n)(1− ε)ak) ≤ µ(1Ak
gn)

=⇒ (1− ε)akµ(Ak(n)) ≤ µ(1Ak
gn) (∗)

Finally, gn =
∑n

k=1 1Ak
gn (gn ≤ g and g support on

⋃n
k=1Ak and (Ak) are disjoint), so

µ(gn) = µ

(
n∑

k=1

1Ak
gn

)

=
n∑

k=1

µ(1Ak
gn)

≥
n∑

k=1

(1− ε)akµ(Ak(n)) by (∗)

↑
n∑

k=1

(1− ε)akµ(Ak)

= (1− ε)µ(g)

Then
(1− ε)µ(g) ≤ lim

n→∞
µ(gn) ≤︸︷︷︸

gn≤fn

lim
n→∞

µ(fn) ≤ M

i.e. µ(g) ≤ M
1−ε for all ε > 0, hence µ(g) ≤ M .

Theorem. Let (f, g) : (E, E , µ) → R be measurable, non-negative. Then ∀α, β ≥ 0,

(a) µ(αf + βg) = αµ(f) + βµ(g)

(b) f ≤ g =⇒ µ(f) ≤ µ(g)

(c) f = 0 almost everywhere ⇐⇒ µ(f) = 0.

Proof. (a) Let fn = (2−n b2nfc) ∧ n, gn = (2−n b2ngc) ∧ n. Then, fn, gn are simple and
fn ↑ f , gn ↑ g. Then αfn + βgn ↑ αf + βg. So by Monotone Convergence Theorem,
µ(fn) ↑ µ(f), µ(gn) ↑ µ(g), µ(αfn + βgn) ↑ µ(αf + βg).

(b) Obvious from the definition.

31



(c) If f = 0 almost everywhere, then 0 ≤ fn ≤ f , so fn = 0 almost everywhere, but fn
simple =⇒ µ(fn) = 0 and µ(fn) ↑ µ(f) so µ(f) = 0.

Theorem. Now, let f, g : (E, E , µ) → R be integrable. Then ∀α, β ∈ R,

(a) µ(αf + βg) = αµ(f) + βµ(g)

(b) f ≤ g =⇒ µ(f) ≤ µ(g)

(c) f = 0 almost everywhere =⇒ µ(f) = 0.

Proof. Exercise. Set f = f+−f−, g = g+−g−, and use definition, µ(f) = µ(f+)−µ(f−).
If µ(f+) = µ(f−), then µ(f) = 0 but f need not be 0 almost everywhere.

Remark.

(1) If 0 ≤ fn ↑ f almost everywhere, then µ(fn) ↑ µ(f).

(2) Monotone Convergence Theorem =⇒ limn

∫
fndµ =

∫
limn fndµ for 0 ≤ fn ↑

lim fn = f . If gn ≥ 0, then (writing fn =
∑n

k=1 gk, fn ↑ f =
∑∞

k=1 gk),

=⇒ lim
n

∫ n∑
k=1

gkdµ =

∫ ( ∞∑
k=1

gk

)
dµ

=⇒
∞∑
k=1

∫
gkdµ =

∫ ∞∑
k=1

gkdµ

i.e.
∞∑
k=1

µ(gk) = µ

( ∞∑
k=1

gk

)

This generalises the countable additivity of µ to integrals of non-negative func-
tions. In part, if gk = 1Ak

where (Ak) disjoint, implies countable additivity of
µ.

Start of

lecture 11 • f ≥ 0, µ∗(f) = sup{µ(g), g simple, g ≤ f}. For f simple, ≥ 0, is µ∗(f) = µ(f)?
µ∗(f) ≥ µ(f) is easy. For any g simple, g ≤ f , µ(g) ≤ µ(f), taking supremum of
LHS, we get µ∗(f) ≤ µ(f).
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• f measurable, f ≥ 0, f bounded, then 2−n b2nfc is simple. For unbounded f , we
truncate to fn = 2−n b2nfc ∧ n (which is simple and has fn ↑ f).

A general question we begun to explore last time: when can we say that

lim

∫
fndµ =

∫
lim fndµ?

Example. fn = 1(n,n+1), fn ≥ 0, fn → 0 as n → ∞. But limn→∞ λ(fn) = 1 >
λ(0) = 0.

Lemma (Fatou’s Lemma). Let fn : (E, E , µ) → R be measurable, non-negative.
Then

µ(lim inf fn) ≤ lim inf µ(fn)

Recall that
lim inf xn = sup

m
inf
k≥m

xk

Proof. For k ≥ n, infm≥n fm ≤ fk. So

µ( inf
m≥n

fm) ≤ µ(fk) ∀k ≥ n

i.e.
µ( inf

m≥n
fm) ≤ inf

k≥n
µ(fk) ≤ lim inf µ(fk) (∗)

Let gn = infm≥n fm. Then gn ≥ 0, and gn ↑ supn gn = supn infm≥n fm = lim inf fn. So
by Monotone Convergence Theorem, µ(gn) ↑ µ(lim inf fn). Taking limit in (∗), we get

µ(lim inf fn) ≤ lim inf µ(fn)

Theorem (Dominated Convergence Theorem). Let (fn) : (E, E , µ) → R be mea-
surable. Suppose |fn| ≤ g for all n, for some integrable function g (i.e. µ(g) < ∞).
Also suppose fn → f as n → ∞ on E. Then f , fn are integrable and

µ(fn) → µ(f)

Proof. f is measurable since it is a limit of measurable functions. Also, taking limits of
|fn| ≤ g, we get |f | ≤ g. So, |fn| ≤ g =⇒ µ(|fn|) ≤ µ(g) < ∞, µ(|f |) ≤ µ(g) < ∞. So
fn, f are integrable.
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We have 0 ≤ g ± gn → g ± f , so since g ± fn are non-negative, by Fatou’s Lemma, we
have

µ(g ± f) ≤ lim inf µ(g ± fn)

i.e.
µ(g) + µ(f) ≤ lim inf(µ(g) + µ(fn)) ≤ µ(g) + lim inf µ(fn)

µ(g)− µ(f) ≤ lim inf(µ(g)− µ(fn)) ≤ µ(g)− lim supµ(fn)

As µ(g) < ∞, we get

µ(f) ≤ lim inf µ(fn) ≤ lim supµ(fn) ≤ µ(f)

i.e. µ(fn) → µ(f).

Remark.

(1) The theorem is still true if we change all the conditions to hold almost every-
where (instead of everywhere).

(2) In fact, µ(|fn − f |) → 0 (recall that µ(|g|) ≥ |µ(g)|, which in this case shows
µ(|fn − f |) ≥ |µ(fn)− µ(f)|).

We prove this by noting |fn − f | ≤ |fn|+ |f | ≤ g + g = 2g and 2g is integrable,
so applying Dominated Convergence Theorem we get that µ(|fn − f |) → 0.

(3) If (E, E , µ) = (Ω,F ,P), Xn → X, P almost surely, and |Xn| ≤ Y with EY < ∞.
Then EXn → EX and E|Xn − X| → 0. In particular, if |Xn| ≤ M ∀n, for
some constant M > 0, M ∈ R, then E|Xn − X| → 0. (Bounded Convergence
Theorem).

(4) fn measurable on [0, 1] and |fn| ≤ 1, and fn → f pointwise, then
∫
fndx →∫

fdx (
∫
fndλ(x)). So stronger than Riemann integral as it requires uniform

convergence.

Comparisons with Riemann integral

(a) FTC:

(1) Let f : [a, b] → R be continuous and set F (t) =
∫ t
a f(x)dx. Then F is differen-

tiable on [a, b] with F ′ = f .

(2) Let F : [a, b] → R be differentiable and F ′ is continuous, then
∫ b
a F ′(x)dx =

F (b)− F (a).
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Proofs are the same as before (just use
∫ t+h
t dx = h).

(a′) If f : [a, b] → R is Lebesgue integrable and F (t) =
∫ t
a f(x)dx. Then limh→0

F (t+h)−F (t)
h =

limh→0

∫ t+h
t f(x)dx

h = f(t) almost everywhere (Lebesgue differentiation Theorem in
Analysis of Functions).

(b) Substitution formula: Let ϕ : [a, b] → R, ϕ strictly increasing and continuously
differentiable. Then for all g Borel measurable, g ≥ 0 on [ϕ(q), ϕ(b)],∫ ϕ(b)

ϕ(a)
g(y)dy =

∫ b

a
g(ϕ(x))ϕ′(x)dx (∗)

Proof. Let V be the set of all measurable functions g for which (∗) this holds. Then
by lineariy of integrals, V is a vector space.

• 1 ∈ V by FTC(2). holds. Also, 1(c,d] ∈ V by FTC(2).

• If fn ∈ V, fn ↑ f , fn ≥ 0, then by Monotone Convergence Theorem, f ∈ V.

Hence by Monotone Class Theorem, (∗) holds ∀g ≥ 0 measurable.

(c) A (bounded) Riemann integrable (RI) function f : [a, b] → R is Lebesgue integrable
in the following sense. If f is bounded on [a, b], f is RI if and only if D = {x ∈ [a, b] :
f is not continuous at x} has λ(D) = 0 (Lebesgue 1904), i.e. f is continuous almost
everywhere. Such an f need not be Borel (but is Lebesgue measurable), and can
be modified on a Lebesgue measure 0 set to make it Borel, i.e. ∃f̃ Borel such that
f̃ = f on A and λ(Ac) = 0, and

∫
f̃dx =

∫
fdx (where we use Lebesgue integral on

the left, and Riemann integral on the right).

(d) 1Q on [0, 1]. D = [0, 1], λ(D) 6= 0, so 1Q is not Riemann integrable. But 1Q is
Lebesgue integrable and 1Q = 0 λ almost surely, so λ(1Q) = 0.

Start of

lecture 12 Theorem (DCT for almost surely convergence). (Ω,F ,P) is a probability space and
(Xn), X are random variables. Suppose Xn → X P almost surely and |Xn| ≤ Y ∀n
for some integrable random variable Y (i.e. EY < ∞), then

E|Xn −X| → 0

as n → ∞.
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Theorem (DCT for in P convergence). (Ω,F ,P) is a probability space and (Xn),
X are random variables. SUppose Xn → X in P probability, and |Xn| ≤ Y ∀n for
some integrable random variable Y . Then

E|Xn −X| → 0

as n → ∞.

Proof. Suppose E|Xn−X| 6→ 0. Then there exists a subsequence (nk) such that E|Xnk
−

X| > ε for all k, for some ε > 0. Now, Xn
P−→ X implies Xnk

P−→ X. Hence ∃(nkl)

such that Xnkl

a.s−→ X and |Xnkl
| ≤ Y . But then by Dominated Convergence Theorem,

E|Xnkl
| → 0, but that contradicts the constructed property of (nk).

Theorem (BCT for in P convergence). Xn
P−→ X and |Xn| ≤ M for some constant

M > 0, ∀n ≥ 0. Then E|Xn −X| → 0.

Theorem (Differentiation under the integral sign). Let U ⊆ R be open and f :
U × E → R such that

(i) x 7→ f(t, x) is integrable for all t ∈ U .

(ii) t 7→ f(t, x) is differentiable ∀x ∈ E.

(iii) ∃g : E → R integrable such that ∀x ∈ E, ∀t ∈ U ,∣∣∣∣∂f∂t (t, x)
∣∣∣∣ ≤ g(x).

THen x 7→ ∂f
∂t (t, x) is integrable ∀t and F : U → R defined by

F (t) =

∫
E
f(t, x)µ(dx)

is differentiable and
d

dt
F (t) =

∫
∂f

∂t
(t, x)µ(dx).
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Proof. For hn → 0, set

gn(x) =
f(t+ hn, x)− f(t, x)

hn
− ∂f

∂t

For any fixed t, gn(x) → 0 for all x ∈ E (by (ii)), and

|gn(x)| =

∣∣∣∣∣∣∣∣
∂f

∂t
(t̃, x)︸ ︷︷ ︸

MVT

−∂f

∂t
(t, x)

∣∣∣∣∣∣∣∣
(iii)
≤ ≤ 2g(x)

and 2g is integrable. Hence, µ(gn) → 0 by Dominated Convergence Theorem, i.e.∫
f(t+ hn)− f(t, x)

hn
µ(dx)−

∫
∂f

∂t
(t, x)µ(dx) → 0

i.e.
lim
n→∞

F (t+ hn)− F (t)

hn︸ ︷︷ ︸
=F ′(t)

=

∫
∂f

∂t
(t, x)µ(dx).

Integrals and image measures

Let f : (E, E , µ) → (G,G) be measurable with the image measure ν = µ ◦ f−1 on (G,G).
If g : (G,G) → R measurable, ≥ 0, then

ν(g) =

∫
G
g(x)dν(x) =

∫
G
gdµ ◦ f−1 ?

=

∫
E
g(f(x))dµ(x)

(the ? equality is an exercise on Example Sheet 2). Then

µ ◦ f−1(g) = µ(g ◦ f)

In part, for X : (Ω,F ,P) → R measurable, X ≥ 0, we have

E(g(X)) =

∫
Ω
g(X(ω))dP(ω) =

∫
g(x)dµX(x)

where µX = P ◦X−1 is the law of X.

Densities of measures

For f : (E, E , µ) → R measurable, ≥ 0, let

ν(A) = µ(f1A) ∀A ∈ E
(
=

∫
A
fdµ

)
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Then ν is a measure on (E, E) (check).

For any g measurable, g ≥ 0 on E, ν(g) = µ(fg), i.e.
∫
gdν =

∫
gfdµ.

Proof. Holds for indicators by definition, then holds for simple functions by additivity,
and for non-negative measurable functions by MCT.

We say that ν has the density f with respect to µ. (µ(f1A) = µ(g1A) ∀A ∈ E =⇒
f = g µ almost everywhere (Example Sheet 2)).

IN part, for µ = λ (Lebesgue measure), ∀f Borel, if µ(f1A) = 0 for all A in a π-system
generating E , then f = 0 almost everywhere.

There exists a Borel measure ν on R given by ν(A) =
∫
A f(x)dx and then ∀g Borel,

g ≥ 0, ν(g) =
∫
f(x)g(x)dx. We say that ν has density f . This ν is a probability

measure on (R,B) if and only if
∫
f(x)dx = 1. For X : (Ω,F ,P) → R, if the law µX (i.e.

P ◦X−1) has the density fX (with respect to λ), we call fX the probability density of
X. Then

P(X ∈ A) = P ◦X−1(A) = µX(A) =

∫
A
fX(x)dx ∀A ∈ B∀g Borel, g ≥ 0

(taking A = (−∞, x], FX(x) =
∫∞
−∞ fX(x)dx. If F ′

X = fX , then this holds).

=

∫
g(x)dµX(x) =

∫
g(x)fX(x)dx

3.1 Product Measures

Definition (Product measure). Let (E1, E1, µ1) and (E2, E2, µ2) be 2 finite measure
spaces. On the Cartesian product E := E1 ×E2, we consider the set of ‘rectangles’

A = {A1 ×A2 : A1 ∈ E1, A2 ∈ E2}

Then A is a π-system. Define the product σ-algebra E = E1 ⊗ E2 := σ(A).

One can show that if Ei are topological spaces with a countable basis, then

B(E1 × E2) = B(E1)⊗ B(E2)

(where E1 × E2 is the product topology on E1 × E2; see Dudley for a proof).

Goal: To construct a product measure on (E1 × E2, E = E1 ⊗ E2).

Start of

lecture 13
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Lemma (Lemma 1). Let f : E → R be E-measurable. Then ∀x1 ∈ E1, the function

x2 7→ f(x1, x2) : E2 → R (∗)

is E2-measurable.

Proof. f = 1A where A = A1 ×A2.

1A(x1, x2) = 1A1×A2(x1, x2) = 1A1(x1) · 1A2(x2) =

{
1A2(x2) if x1 ∈ A

0 otherwise

Let V be the set of all functions for which (∗) holds. If fn ∈ V for all n, fn ↑ f , then
f ∈ V. By Monotone Class Theorem, V contains all bounded measurable functions f .
fn = (−n) ∨ f ∧ n, fn ∈ V and fn → f . So f ∈ V.

Lemma (Lemma 2). Let f : (E, E) → R be measurable and

(i) f is bounded or

(ii) f is non-negative.

Then
f1(x1) =

∫
E2

f(x1, x2)µ2(dx2), x1 ∈ E1

is E1-measurable and (i) bounded or (ii) non-negative, taking values in [0,∞].

Remark. A function f taking values in [0,∞] is measurable means f−1(∞) ∈ E ,
f−1(A) ∈ E for all A ∈ B.

Proof. f = 1A1×A2 then f1(x1) =
∫
1A1×A2(x1, x2)µ2(dx2) = 1A1(x1) × µ2(A2) is E1-

measurable. fn ↑ f . Use Monotone Convergence Theorem and limit of measurable
functions if measurable. Conclude using the Monotone Class Theorem.

Theorem. There exists a unique measure µ := µ1 ⊗ µ2 on E such that

µ(A1 ×A2) = µ1(A1)µ2(A2) ∀A1 ∈ E1, A2 ∈ E2
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Proof. Uniqueness obvious as A is a π-system generating E and µ is a finite measure.
For existence, define the iterated integral

µ(A) =

∫
E1

(∫
E2

1A(x1, x2)µ2(dx2)

)
µ1(dx1) A ∈ E

This definition makes sense by the previous two lemmas. Clearly, µ(∅) = 0, and µ(A1 ×
A2) = µ1(A1)µ2(A2). µ is countably additive: if (Ai) disjoint, A =

⋃
i = 1∞Ai, then

1A =
∑∞

i=1 1Ai , so apply Monotone Convergence Theorem twice.

Remark. Note that

µ(A) =

∫
E2

(∫
E1

1A(x1, x2)µ1(dx1)

)
µ2(dx2)

by Dynkin’s lemma.

Theorem (Fubini-Tonelli). Consider (E, E , µ) = (E1×E2, E⊗E2, µ1⊗µ2), µi(Ei) <
∞.

(1) Let f : E → R be measurable, f ≥ 0. Then

µ(f)
(†)
=

∫
E1

(∫
E2

f(x1, x2)µ2(dx2)

)
µ1(dx1)

(∗)
=

∫
E2

(∫
E1

f(x1, x2)µ1(dx1)

)
µ2(dx2)

(2) Let f : E → R be µ-integrable (i.e.
∫
|f |dµ < ∞). If we set

A1 = {x1 ∈ E1 :

∫
E2

|f(x1, x2)|dµ2(x2) < ∞}

and define f1 : E1 → R by f1(x1) =
∫
E2

f(x1, x2)dµ2(x2) for all x1 ∈ A1 and 0
otherwise. Then µ1(A

c
1) = 0 and f1 is µ1-integrable and µ1(f1) = µ(f).

Proof.

(1) The identities (†) and (∗) hold for f = 1A for A ∈ E , by definition of product
measure µ. Hence they extend to simple functions by linearity and for general
functions f ≥ 0 by Monotone Convergence Theorem and approximation by simple
functions fn = 2−n b2nfc ∧ n.

(2) Define h : E1 → [0,∞] as h(x1) =
∫
E2

|f(x1, x2)|µ2(dx2). By the Lemma 2, h is
measurable (as |f | ≥ 0), is non-negative, so A1 ∈ E1 (as h−1({∞}) ∈ E1, {∞} = Ac

1).
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So by (1), ∫
E1

(∫
E2

|f(x1, x2)|µ2(dx2)

)
µ1(dx1) = µ(|f |) < ∞.

Hence, µ1(A
c
1) = 0 (hence f1 integrable) (as µ(h) ≥ µ(h1Ac

1
) = ∞ if µ(Ac

1) > ∞).
Setting

f+
1 (x1) =

∫
E2

f+(x1, x2)µ2(dx2), f−
1 (x) =

∫
E2

f−(x1, x2)µ2(dx2),

we see
f1 = (f+

1 − f−
1 )1A1 = f+

1 1A1 − f−
1 1A1

Also, µ1(f
+
1 )

(1)
= µ(f+) < ∞ and µ1(f

−
1 )

(1)
= µ(f−) < ∞, so,

µ(f) = µ(f+)− µ(f−) = µ1(f
+
1 )− µ1(f

−
1 ) = µ1(f1)

Remark.

(1) The proof of (2) is symmetric in µ1, f1, so µ1(f) = µ(f) = µ2(f2). So we can
interchange the order of integrals whenever f ≥ 0 or f integrable.

(2) The theorems extend to σ-finite measures µ.

(3) Associativity is easy to check, i.e. (E1 ⊗ E2) ⊗ E3 = E1 ⊗ (E2 ⊗ E3) and µ1 ⊗
(µ2 ⊗ µ3) = (µ1 ⊗ µ2) ⊗ µ3. So we can define the n-fold products

⊗n
i=1 µi on

(E1 × · · · × En, E ⊗ · · · ⊗ En) and n-fold integrals. In particular, when Ei = R
and µi = λ, we get

⊗n
i=1 λi on (Rn,B(Rn)).

Start of

lecture 14 Proposition. Let X1, . . . , Xn be random variables Xi : (Ω,F ,P) → (Ei, Ei). Set
E = E1 × · · · × En, E = E1 ⊗ · · · ⊗ En. Consider X : (Ω,F ,P) → (E, E) given
by X(ω) = (X1(ω), . . . , Xn(ω)). Then X is E-measurable and the following are
equivalent:

(i) X1, . . . , Xn are independent (i.e. σ{X−1
i (A) : A ∈ Ei} are independent).

(ii) µX = µX1 ⊗ µX2 ⊗ · · · ⊗ µXn .

(iii) For all bounded measurable fi : Ei → R,

E

(
n∏

i=1

fi(Xi)

)
=

n∏
i=1

E(fi(Xi)).
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Proof. X measurable: X−1(A) ∈ F ∀A ∈ E . Enough to check

X−1(A1 × · · · ×An) = {ω : Xi(ω) ∈ A1, . . . , Xn(ω) ∈ An}

=

n⋂
i=1

X−1
i (Ai)

is in F . But this is true since Xi : (Ω,F) → (Ei, Ei) are all measurable, so X−1
i (Ai) ∈ F

for all Ai ∈ Ei. Now we will show (i) =⇒ (ii) =⇒ (iii) =⇒ (i).

(i) =⇒ (ii) Let ν = µX1 ⊗ · · · ⊗ µXn . Enough to show that

µX(A1 × · · · ×An)
?
= ν(A1 × · · · ×An)

= P(X1 ∈ A1, . . . , Xn ∈ An)

(a)
= P(X1 ∈ A1) · · ·P(Xn ∈ An)

= µX1(A1) · · ·µXn(An)

= ν(A)

Now finish since A is a π-system generating E…

(ii) =⇒ (iii)

E

(
n∏

i=1

fi(Xi)

)
=

∫ n∏
i=1

fi(xi)dµX(x)

=
n∏

i=1

∫
fi(xi)dµXi(xi)

=
n∏

i=1

E(fi(Xi))

(iii) =⇒ (i) Use fi = 1Ai , Ai ∈ Ei. Then

E

(
n∏

i=1

1Ai(Xi)

)
= E(1A1×···×An(X))

= P(X1 ∈ A1, . . . , Xn ∈ An)

(a)
=

n∏
i=1

E(1Ai(Xi))

=
n∏

i=1

P(Xi ∈ Ai)
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4 Lp Spaces, Norms, Inequalities

Definition (Norm). Recall that a norm on a real vector space V is ‖•‖ : V → [0,∞)
such that

(1) ‖λv‖ = |λ|‖v‖ for all λ ∈ R, v ∈ V .

(2) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ W .

(3) ‖v‖ = 0 ⇐⇒ v = 0.

Definition (Lp norm).For (E, E , µ) a measure space and 1 ≤ p ≤ ∞, define

Lp = Lp(E, E , µ) = {f : E → R measurable : ‖f‖p < ∞}

where

‖f‖p =
(∫

|f(x)|pdµ(x)
)1/p

for 1 ≤ p < ∞, and

‖f‖∞ = ess sup |f | = inf{λ ≥ 0 : |f | ≤ λ µ.almost everywhere}

By linearity of integral, this satisfies the properties of a norm:

(1) This holds for 1 ≤ p < ∞ and for p = ∞ it’s obvious.

(2) This holds for p = 1,∞ easily. For other p, we shall show by Minkowski inequality.

(3) f = 0 implies ‖f‖p = 0. But ‖f‖p = 0 implies f = 0 almost everywhere. So we fix
this by defining equivalence classes

[f ] = {g : g = f almost everywhere}

and
Lp = {[f ] : f ∈ Lp}

Then Lp, 1 ≤ p ≤ ∞ are normed vector spaces.
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4.1 Inequalities

Markov / Chebyshev’s Inequality

Let f ≥ 0 measurable, then ∀λ > 0,

µ({x ∈ E : f(x) ≥ λ})︸ ︷︷ ︸
µ(f≥λ)

≤ µ(f)

λ

Proof. λ1{f≥λ} ≤ f . So integrating with respect to µ, we get

λµ(f ≥ λ) ≤ µ(f).

In particular, if g ∈ Lp, p < ∞, then µ(|g| ≥ λ) ≤ µ(|g|p)
λp < ∞. This gives the tail

estimates as λ → ∞.

Definition (Convex function). For I ⊆ R an interval, say a function c : I → R is
convex if ∀x, y ∈ I, t ∈ [0, 1],

c(tx+ (1− t)x) ≤ tc(x) + (1− t)c(y)

equivalently:
c(t̃)− c(t)

t̃− x
≤ f(y)− c(t̃)

y − t̃
(∗)

for x < t̃ < y in I. (In particular, this second definition shows that c is continuous
on I, hence Borel measurable).

Lemma. Let c : I → R be convex, m ∈ I (an interval). Then there exists a, b ∈ R
such that c(x) ≥ ax+ b for all x ∈ I, and equality at x = m.

Proof. Let

a = sup

{
c(m)− c(x)

m− x
: x ∈ I, x < m

}
< ∞.

Then by (∗), ∀y > m, y ∈ I,

c(m)− c(x)

m− x
≤ a ≤ c(y)− c(m)

y −m

These inequalities imply

c(y) ≥ ay − am+ c(m) ∀y ≥ m
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and
c(x) ≥ ax− am+ c(m) ∀x ≤ m.

Theorem (Jensen’s Inequality). Let X be an integrable random variable (i.e.
E|X| < ∞), taking values in an interval I ⊂ R, and let c : I → R be convex.
Then E(c(x)) is well-defined, and

E(c(X)) ≥ c(E(X))

Proof. If X is a constant almost surely, then nothing to prove. Assume otherwise. Then
E(x) = m ∈ I. Using the previous lemma, ∃a, b ∈ R such that

c(X) ≥ aX + b (∗)

In particular,
c((X))− ≤ |a||X|+ |b|

so E(c(X)−) < ∞. Hence E(c(X)) = E(c(X)+)−E(c(X)−) is well-defined on (−∞,∞].

Claim: (∗) =⇒ E(c(X)) ≥ aE(X) + b. If E(c(X)) = ∞, nothing to prove. Otherwise,
c(X) and aX+ b are integrable random variables satisfying (∗), so taking expectatation,

E(c(X)) ≥ aE(X) + b = am+ b = c(m) = c(E(X)).

As an application: (Ω,F ,P) and 1 ≤ p ≤ ∞. If X ∈ L∞(P), then X ∈ Lpp(P) for all
1 ≤ p < ∞ as ‖X‖p ≤ ‖X‖∞.

Claim: If X ∈ Lq and q > p ≥ 1, then X ∈ Lp.

‖X‖p = (E|X|p)1/p = (c(E(|X|p)))1/q ≤ (E(c(|X|p)))1/q = (E(|X|q))1/q = ‖X‖q

Hence, X ∈ Lq implies X ∈ Lp for all 1 ≤ p < q, i.e.

L∞(P) ⊆ Lq(P) ⊆ Lp(P) ⊆ L1(P)

for all 1 ≤ p ≤ q ≤ ∞.

Start of

lecture 15 Theorem (Holder Inequality). Let f, g measurable and 1 ≤ p ≤ g ≤ ∞ be conju-
gate, i.e. 1

p + 1
q = 1, then

µ(|fg|) ≤ ‖f‖p‖g‖q.
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Proof. If p or q = 1 or ∞ then clear. So are the cases when ‖f‖p or ‖g‖q = 0. Exclude
these.

Dividing both sides by ‖f‖p, we may assume ‖f‖p = 1, i.e.
∫
|f |pdµ = 1. So, define a

probability measure P on E by

P(A) =

∫
A
|f |pdµ

(P has probability density |f |p with respect to µ). Also, for h ≥ 0 measurable,∫
hdP =

∫
h|f |pdµ (∗)

Then,

µ(|fg|) = µ(|fg|1{|f |>0})

=

∫
|f |p|g|
|f |p−1

1{|f |>0}dµ

=

∫
|g|

|f |p−1
1{|f |>0}|f |pdµ

=

∫
|g|

|f |p−1
1{|f |>0}dP

= E
(

|g|
|f |p−1

1{|f |>0}

)
≤
(
E
(

|g|q

|f |q(p−1)
1|f |>0

))1/q

(Jensen’s Inequality)

=

(∫ (
|g|q

|g|p
1{|f |>0}

)
dP
)1/q

=

(∫
|g|q1{|f |>0}dµ

)1/q

(by (∗))

≤
(∫

|g|qdµ
)1/q

= ‖g‖q

Remark. p = q = 2 is the Cauchy-Schwarz inequality (see Example Sheet 3).

Theorem (Minkowski inequality). For p ∈ [1,∞] and f, g measurable, ‖f + g‖p ≤
‖f‖p + ‖g‖p.
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Proof. p = 1,∞ obvious. Also obvious when ‖f‖p or ‖g‖p = 0 or ‖f + g‖p. Assume
otherwise. Since

|f + g|p ≤ 2p(|f |p + |g|p)

we have
µ(|f + g|p) ≤ 2p(µ(|f |p) + µ(|g|p)) < ∞

if f, g ∈ Lp. So f + g ∈ Lp. With q the conjugate of p,

‖f + g‖pp =
∫

|f + g|pdµ

=

∫
|f + g||f + g|p−1dµ

≤
∫

|f + g|p−1|f |dµ+

∫
|f + g|p−1|g|dµ

≤ ‖f‖p‖(f + g)p−1‖q + ‖g‖p‖(f + g)p−1‖q (Holder Inequality)

=

∫ |f + g|

=p︷ ︸︸ ︷
(p− 1)qdµ


1/q

(‖f‖p + ‖g‖p)

=

(∫
|f + g|pdµ

)1/q

︸ ︷︷ ︸
=‖f+g‖p/qp

(‖f‖p + ‖g‖p)

Hence, dividing by ‖f + g‖p/qp , we get

‖f + g‖p ≤ ‖f‖p + ‖g‖p

Theorem (Lp is a complete normed vector space (Banach space)). Let p ∈ [1,∞].
Let (fn)n∈N be a sequence of functions in Lp such that

∀ε > 0 ∃N ∈ N ∀m,n ≥ N ‖fm − fn‖p < ε

(i.e. (fn) is Cauchy in Lp). Then ∃ f ∈ Lp such that ‖fn − f‖p → 0 as n → ∞.

Proof. Assume 1 ≤ p < ∞ (p = ∞ is an exercise).

Choose a subsequence (nk) such that ‖fnk+1
− fnk

‖p ≤ 2−k. Then S =
∑∞

k=1 ‖fnk+1
−

fnk
‖p < ∞. By Minkowski inequality, for any K ∈ N,∥∥∥∥∥

K∑
k=1

|fnk+1
− fnk

∥∥∥∥∥
p

≤
∞∑
k=1

‖fnk+1
− fnk

‖p = S < ∞.
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So, ∫ ( K∑
k=1

|fnk+1
− fnk

|

)p

dµ ≤ Sp < ∞.

But (
K∑
k=1

|fnk+1
− fnk

)p

↑

(
K∑
k=1

|fnk+1
− fnk

)p

.

So by Monotone Convergence Theorem,∥∥∥∥∥
∞∑
k=1

|fnk+1
− fnk

|

∥∥∥∥∥
p

< ∞.

So, in particular,
∞∑
k=1

|fnk+1
− fnk

| < ∞µ.almost everywhere.

Let A be the set where this is < ∞. Then µ(Ac) = 0. For any x ∈ A, (fnk
(x)) is Cauchy,

and since R is complete, it converges to f(x) say. Define f(x) = 0 for all x ∈ Ac. Then
f is measurable and fnk

→ f as k → ∞ µ almost everywhere. Then,

‖fn − f‖pp = µ(|fn − f |p) = µ(lim inf
k

|fn − fnk
|pp)

Fatou’s Lemma
≤ lim inf

k
µ(|fn − fnk

|p) ≤ εp

and
‖f‖p

Minkowski inequality
≤ ‖fN − f‖p + ‖fn‖p ≤ εp + ‖fN‖p < ∞.

Hence f ∈ Lp and fn
Lp

→ f .

Remark. One can show that any choice of vector spaces

V = C[0, 1], {simple functions}, {finite linear combination of indicators of intervals}

are dense in Lp((0, 1),B, λ) and so (C[0, 1], ‖ • ‖1) is L1 space of Lebesgue integrable
functions (exercise in Example Sheet 3).

L2 as Hilbert space: On a vector space V , a symmetric bilinear form V × V → R,
(u, v) 7→ 〈u, v〉 is called an inner product if 〈v, v〉 ≥ 0 ∀v ∈ V and 〈v, v〉 = 0 if and only
if v = 0.

Then
√

〈v, v〉 = ‖v‖ is a norm (Cauchy-Schwarz inequality gives the triangle inequality
for ‖ • ‖). If (V, ‖ • ‖) is complete, it is called a Hilbert space.

Corollary. L2 with the inner product 〈f, g〉 =
∫
fgdµ is a Hilbert space.
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Basic Geometry

(1) Pythagoras theorem ‖f + g‖22 = ‖f‖22 + ‖g‖22 + 2〈f, g〉.

(2) Parallelogram law: ‖f + g‖22 + ‖f − g‖22 = 2(‖f‖22 + ‖g‖22)

We say f is orthogonal to f (written f ⊥ g) if 〈f, g〉 = 0. Then ‖f + g‖22 = ‖f‖22 + ‖g‖22.
For a subset V ⊆ L2, we define its orthogonal complement

V ⊥ = {f ∈ L2 : 〈f, v〉 = 0 ∀v ∈ V }

A subset V is closed if (fn) ∈ V and fn
L2

→ f implies f ∈ V .

Start of

lecture 16 Theorem (Orthogonal projection). If V is a closed subspace of L2, then ∀f ∈ L2,
f = v + u where v ∈ V , u ∈ V ⊥. Moreover, ‖f − v‖2 ≤ ‖f − g‖2 for all g ∈ V with
equality if and only if g = v almost everywhere. In particular, v is unique (almost
everywhere) and is called the orthogonal projection of f on V .

Proof. Define d(f, V ) = infg∈V ‖f − g‖2. Let (gn) ∈ V be a sequence such that ‖f −
gn‖2 → d(f, V ). Now by parallelogram law,

2(‖f − gn‖22 + ‖f − gm‖22) = ‖gn − gm‖22 + 4

∥∥∥∥f − gn + gm
2

∥∥∥∥2︸ ︷︷ ︸
≥4d(f,V )2
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so by taking limn,m→∞, we deduce that ‖gn − gm‖22 → 0, i.e. (gn) is Cauchy. As
L2 is complete and V is closed, gn

L2

−→ v ∈ V . Then ‖f − gn‖22 → ‖f − v‖22 hence
‖f − v‖22 = d(f, V )2, i.e. d(f, V ) = ‖f − v‖2.

Then for any h ∈ V , t ∈ R,

d(f, v)2 ≤ ‖f − (v + th)‖22 = d(f, v)2 − 2t〈f − v, h〉+ t2‖h‖22 (∗)

Letting t ↓ 0 and t ↑ 0, 〈f − v, h〉 = 0, hence f − v ∈ V ⊥. Now

f = v︸︷︷︸
∈V

+ f − v︸ ︷︷ ︸
∈V ⊥

as desired. For any g ∈ V ,
f − g = f − v︸ ︷︷ ︸

∈V ⊥

+ v − g︸ ︷︷ ︸
∈V

and
‖f − g‖22 = ‖f − v‖22 + ‖v − g‖22

Hence ‖f − g‖2 ≥ ‖f − v‖2 with equality if and only if ‖v − g‖2 = 0, i.e. v = g almost
everywhere.

(Ω,F ,P) and X,Y ∈ L2(Ω,F ,P) with EX = EY = 0. Then Cov(X,Y ) = E(X −
EX)(Y − EY ) = EXY = 〈X,Y 〉. Var(X) = Cov(X,X). If X and Y independent,
〈X,Y 〉 = 0, converse not true.

If G is a sub-σ-algebra of F (i.e. G ⊆ F), then L2(Ω,G,P) is a closed subspace of
L2(Ω,F ,P). For X ∈ L2(Ω,F ,P), (a variant of) the conditional expectation of X given
G, E(X | G) is defined as the orthogonal projection of X on L2(Ω,F ,P) (X should be
measurable with respect to G and ‖X−Y ‖2 ≥ ‖X−E(X | G)‖2 for all Y G-measurable).

Question: How to define E(X | G) is X ∈ L1(Ω,F ,P)? (advanced probability).

Exercise: Let (Gi)i∈I be a countable family of disjoint events whose union is Ω and set
G = σ(Gi : i ∈ I). Let X be integrable. Then the conditional expression of X given G
is given by

Y =
∑
i

E(X | Gi)1Gi , E(X | Gi) =
E(x1Gi)

P(Gi)
∀i ∈ I

Check:

(1) Y is G-measurable

(2) Y ∈ L2(Ω,F ,P)

(3) Y is “the” orthogonal projection of X onto L2(Ω,G,P) if X ∈ L2(Ω,F ,P).
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Lp Convergence and Uniform Integrability

(Ω,F ,P).

Explanations:

fn = n1(0,1/n) on ((0, 1),B, λ). Then fn → 0 almost surely. But E|fn| = Efn = 1 ∀n,
i.e. almost surely 6=⇒ Lp convergence.

P(|Xn −X| > ε) ≤ E|Xn −X|p

εp
→ 0

(Markov inequality).

Theorem (DCT). Let (Xn) be such that Xn
P−→ X and |Xn| ≤ Y for all n, for

some integrable random variable. Then Xn
L1

→ X, i.e. E|Xn −X| → 0 as n → ∞.

Question: What is the “minimum condition” on (Xn) under which Xn
P−→ X implies

Xn
L1

−→ X? =⇒ E|Xn| → E|X|, “Uniformly Integrable”.

For X ∈ L1(P) define

IX(δ) = sup{E(|X|1A) : A ∈ F ,P(A) ≤ δ}

Then IX(δ) → 0 as δ → 0. (If not then ∃ε > 0 and (An) ∈ F such that P(An) ≤ 2−n

and E|X|1An ≥ ε. Then
∑

P(An) < ∞ so P(An i.o.) = 0 by Borel-Cantelli Lemma 1.
Then

ε ≤ E|X|1An ≤ E|X|1⋃∞
m=n Am

DCT−→ 0

since
1⋃∞

m=n Am
→ 1⋂

m

⋃∞
m=n Am

= 1{An i.o.} = 0 almost surely

contradiction).
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Definition. Let χ be a collection of random variables in L1(P). Define

Iχ(δ) = sup{E(|X|1A) : X ∈ χ,A ∈ F ,P(A) ≤ δ}

We say χ is uniformly integrabl (UI) if

(1) χ is bounded in L1 (i.e. supX∈χ ‖X‖1 = supX∈χ E|X| = Iχ < ∞)

(2) Iχ(δ) → 0 as δ → 0.

Remark. Note to reader: I didn’t follow what the lecturer was writing in these
remarks so they are probably nonsense, but if you rearrange things appropriately
it should hopefully make sense (I’ve tried thinking about it for a bit but haven’t
figured it out).

(1) Any single integrable random variable is UI (so does any finite collection of
integrable random variables, also if

χ = {X : X a random variable such that |X| ≤ Y for some Y ∈ L1}

) Then X is UI,
Iχ(δ) ≤ IY (δ) → 0

as δ → 0.

(2) If χ is bounded in Lp for some p > 1 then

supE(X1A)
Holder Inequality

≤ ‖X‖p(P(A))1/q ≤ Cδ1/q

X ∈ χ such that P(A) ≤ δ i.e. Iχ(δ) ≤ Cδ1/q → 0 as δ → 0 for all A such that
P(A) ≤ δ as supX∈χ E|X|1A ≤ EY 1A.

(3) L1 bounded 6=⇒ UI.

Start of

lecture 17 Recall for a collection χ of random variables, χ is UI if

(1) χ is L1 bounded

(2) Iχ(δ) = supX∈χ{E(|X|1A) : A ∈ F ,P(A) ≤ δ} ↓ 0 as δ ↓ 0.
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Lemma (Alternative definition of UI). χ is UI if and only if

sup
X∈χ

E(|X|1(|X|≥K)) → 0

as K → ∞.

Proof.

⇒ Fix any ε > 0. Then ∃δ > 0 such that Iχ(δ) < ε (as χ is UI). Choose K < ∞ such
that

Iχ(1)

δ
=

supX∈χ E|X|
δ

≤ K.

Then for any X ∈ χ,

P(|X| ≥ K)
Markov
≤ E|X|

K
≤ Iχ(1)

K
≤ δ.

So, with A = {|X| ≥ K},

E(|X|1|X|≥K) ≤ Iχ(δ) < ε.

⇐
E|X| = E|X|1(|X|≥K) + E |X|1(|X|≤K)︸ ︷︷ ︸

≤K

So,
sup
X∈χ

E|X| ≤ K + sup
X∈χ

E|X|1(|X|≤K)

Choose K large so that the second term on the RHS is ≤ 1. Then χ is L1 bounded.
Fix any ε > 0. Choose K so that E(|X|1|X|≥K) < ε/2 for all X ∈ χ. Then choose
δ > 0 such that δ ≤ ε

2K . Then ∀X ∈ X and A ∈ F with P(A) ≤ δ,

E(|X|1A) = E(|X|1A1|X|≥K) + E(|X|1A1|X|≤K)

≤ E(|X|1|X|≥K)︸ ︷︷ ︸
<ε

+ KP(A)︸ ︷︷ ︸
≤Kδ≤ε/2

≤ ε

Theorem. Let (Xn), X be random variables on (Ω,F ,P). Then the following are
equivalent:

(a) X,Xn ∈ L1 for all n and Xn
L1

−→ X.

(b) χ = (Xn : n ∈ N) is UI and Xn
P−→ X.
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Proof.

(a) =⇒ (b) By Markov,

P(|Xn −X| > ε) ≤ E|Xn −X|)
ε

→ 0

as n → ∞, so Xn
P−→ X. Choose N such that E|Xn − X| < ε

2 for all
n ≥ N . Choose δ so that E|X|1A ≤ ε

2 whenever P(A) < δ.

E|Xn|1A ≤ E|Xn −X|︸ ︷︷ ︸
≤δ/2

+E|X|1A︸ ︷︷ ︸
≤ε/2

≤ ε ∀n ≥ N.

For all n = 1, 2, . . . , N − 1,

E|Xn|1A ≤ ε

by the choice of δ. Hence χ is UI.

(b) =⇒ (a) Xn
P−→ X. So take a subsequence (nk) such that Xnk

almost surely−→ X. Then

E|X| = E lim inf |Xnk
|

Fatou’s Lemma
≤ lim inf E|XnK | ≤ sup

Xn∈χ
E|Xn| < ∞.

(as χ is UI, hence L1 bounded). So X ∈ L1. Define the truncated random
variables

XK
n = (−K) ∨Xn ∧K

Xk(−k) ∨X ∧K

Then XK
n

P−→ XK (as P(|XK
n −XK | > ε) ≤ P(|Xn −X| > ε)).

Aside: If Xn
P−→ X and f is a continuous function, then f(xn)

P−→ f(x).
Also |XK

n | ≤ K for all n. Hence by BCT, XK
n

L1

−→ Xk. Now,

E|Xn−X| ≤ E

≤|Xn|1(|Xn|≥K) (1)︷ ︸︸ ︷
|Xn −XK

n | +E

≤E|X|1(|X|≤K) (2)︷ ︸︸ ︷
|X −XK | +E|XK

n −XK | ≤ ε

for all n ≥ N . By UI choose K large so that (1) and (2) are ≤ ε
3 . Then

choose N large so that the last term is ≤ ε
3 for all n ≥ N .

54



5 Fourier Transforms

For g measurable such that
∫
|G|dx < ∞, define∫

g(x)µ(dx) =

∫
Re(g(x))µ(dx) + i

∫
Im(g(x))µ(dx)

Here Lp = Lp(Rd) is the space of complex valued Borel measurable functions on Rd, i.e.
f : Rd → C for which (∫

Rd

|f(x)|pµ(dx)
)1/p

︸ ︷︷ ︸
=‖f‖p

< ∞

for all 1 ≤ p < ∞. and ∣∣∣∣∫ g(x)µ(dx)

∣∣∣∣ ≤ ∫ |g(x)|µ(dx)

(Example Sheet 3). We also define for f, g ∈ L2,

〈f, g〉 =
∫

f(x)g(x)dµ(x)

which is an inner product on L2(µ). For any y ∈ Rd,∫
f(x− y)dx =

∫
f(y − x)dx−

∫
f(x)dx

=

∫
f(−x)dx

(translation invariance and x 7→ −x symmetry of λ, see Example Sheet 3). Also for
a ∈ R, a 6= 0, ∫

f(ax)dx =
1

ad

∫
f(x)dx

Definition (Fourier Transform). The Fourier transform f̂ of f ∈ L1(Rd) is defined
as

f̂(u) =

∫
Rd

f(x)ei〈u,x〉dx

for all u ∈ Rd and 〈u, x〉 =
∑d

i=1 uixi.

For all u ∈ Rd,
sup
u

|f̂(u)| ≤
∫

|f(x)|dx = ‖f‖1 < ∞
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i.e. f̂ ∈ L∞. Also, for un → u,

f(x)ei〈un,x〉 → f(x)ei〈u,x〉

and |f(x)ei〈un,x〉| ≤ |f(x)| and f ∈ L1, so by DCT, f̂(un) → f̂(u). Moreover,

lim
‖u‖→∞

f̂(u) = 0

(Riemann-Lebesgue Lemma, Example Sheet 3). Thus

f̂ ∈ C0(Rd) = {f bounded continuous vanishing at ∞}

The map is 1− 1 (but not onto).

For a finite / probability measure µ on Rd, define similarly,

µ̂(u) =

∫
ei〈ux〉dµ(x) u ∈ Rd

Then µ̂ is a bounded continuous function on Rd and |µ̂(u)| ≤ µ(Rd) < ∞. If µ has
density f (with respect to λ), then

µ̂(u) =

∫
ei〈u,x〉f(x)dx = f̂(u).

Definition (Characteristic function). The characteristic function (c.f.) φX of a
random variable X on Rd is the Fourier transform of its law µX = P ◦X−1. So

φX(u) = µ̂X(u) =

∫
ei〈u,x〉dµX(x) =

∫
ei〈u,x〉dP = Eei〈u,X〉

(ν ◦ f−1(g) = ν(f ◦ g)). In particular if X has pdf f , then φX(u) = f̂(u).

Start of

lecture 18 Definition. For f ∈ L1(Rd), with f̂ ∈ L1(Rd), we say that the Fourier Inversion
holds for f if

f(x) =
1

(2π)d

∫
Rd

f̂(u)e−i〈u,x〉du

almost everywhere in Rd.
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Remark.

(1) The RHS is continuous by DCT, so for f continuous, the equality is everywhere.

(2) f 7→ f̂ , L1 → C0 is 1 − 1. (for f, g ∈ L1 with f̂ = ĝ, then f − g ∈ L1 and
f̂ − g = f̂ − ĝ = 0. So by Fourier Inversion, f − g = 0 almost everywhere).

A key concept in Fourier analysis is convolution.

Definition (Convolution). For f ∈ Lp(Rd), 1 ≤ p < ∞, and ν a probability
measure,

f ∗ ν(x) =

{∫
Rd f(x− y)ν(dy) if the integral exists
0 otherwise

x ∈ Rd

∫
|f ∗ ν(x)|pdx ≤

∫ (∫
|f(x− y)|ν(dy)

)p

dx

≤
∫∫

|f(x− y)|pν(dy)dx (as p ≥ 1, use Jensen’s Inequality)

=

∫ (∫
|f(x− y)p|dx

)
ν(dy) (Fubini-Tonelli)

=

∫ (∫
|f(x)|pdx

)
ν(dy) (λ is translation invariant)

= ‖f‖pp
< ∞

Hence f ∗ ν is defined almost everywhere, and ‖f ∗ ν‖p ≤ ‖f‖p < ∞. When ν has pdf
g ∈ L1,

f ∗ ν(x) =
∫

f(x− y)g(y)dy = f ∗ g(x).

For 2 probability measures µ, ν on Rd, the convolution µ∗ν is a new probability measure
defined as

µ ∗ ν(A) =

∫∫
1A(x+ y)µ(dx)ν(dy) = µ⊗ ν(x+ y ∈ A) = P(X + Y ∈ A).

where X,Y are independent, X ∼ µ, Y ∼ ν. In other words, (X + Y ) ∼ µ ∗ ν.
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If µ has pdf f ∈ L1, then

µ ∗ ν(A) =

∫ (∫
1A(x+ y)f(x)dx

)
ν(dy)

=

∫ (∫
1A(x)f(x− y)dx

)
ν(dy) (translation invariance)

=

∫
1A(x)

∫ f∗ν(x)︷ ︸︸ ︷
f(x− y)ν(dy)

 dx (Fubini-Tonelli)

=

∫
1Af ∗ ν(x)dx

So, µ ∗ ν has the pdf f ∗ ν.

Easy to check:

(1) f̂ ∗ ν(u) = f̂(u)ν̂(u) for all f ∈ L1, ν a probability measure.

(2) µ̂ ∗ ν(u) = û(u) · ν̂(u) for all µ, ν probability measures. X,Y independent, X ∼ µ,
Y ∼ ν, then X + Y ∼ ν ∗ µ, then

µ̂ ∗ ν = Eei〈u,X+Y 〉 ind
= Eei〈u,X〉 · Eei〈u,Y 〉 = µ̂(u)ν̂(u).

Fourier transform of Gaussians

If φz is the characteristic function of Z ∼ N(0, 1), i.e.

φZ(u) = EeiuZ =

∫
1√
2π

e−
z2

2 eiuzdz

then by a previous theorem, φZ is differentiable and can be differentiated under the
integral sign, i.e.

d

du
φZ(u) =

1√
2π

∫
d

du
(e−

z2

2 eiuz)dz

=
1√
2π

∫
izeiuze−

z2

2 dz

=
i√
2π

∫
eiuz(ze−

z2

2 )dz

=
i√
2π

∫
iueiuze−

z2

2 dz (integration by parts)

= −u

∫
eiuz

e−
z2

2

√
2π

dz

= −uφZ(u) (∗)
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Hence,
d

du
(e

u2

2 φZ(u)) = e
u2

2 φ′
Z(u) + φZ(u)ue

u2

2
(∗)
= 0.

i.e. e
u2

2 φZ(u) = φZ(0) = 1, so φZ(u) = e−
u2

2 .

Consider for t ∈ (0,∞), the centered Gaussian random variable on Rd which has pdf gt
(with respect to λd),

gt(x) =
1

(2πt)d/2
e−

‖x‖2
2t , ‖x‖2 =

d∑
i=1

x2i .

So, if (Z1, . . . , Zd) are IID N(0, 1), then
√
tZ has density g. So,

ĝt(y) = E(ei〈u,
√
tz〉)

= E
(
ei

∑d
i=1 ui

√
tzi
)

= E

(
d∏

i=1

eiui

√
tzi

)

=

d∏
i=1

E(eiui

√
tzi) (zi independent)

=

d∏
i=1

φZ(
√
tui)

=
d∏

i=1

e−t
u2i
2

= e−
t‖u‖2

2

Hence,

ĝt(y) = e−t‖u‖2/2 =
(2π)d/2

td/2
=

(
t

2π

)d/2

e−t‖u‖2/2 =
(2π)d/2

td/2
g1/t(u).

So, ̂̂gt(u) = (2π)d/2

td/2
ĝ1/t(u) = (2π)dgt(u).

Then
gt(x) = gt(−x) = (2π)−d ̂̂gt(−x) = (2π)−d

∫
ĝt(u)e

−i〈u,x〉du.

Thus the Fourier Inversion holds for gt.
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Definition (Gaussian convolution). For f ∈ L1(Rd), the Gaussian convolution of
f is f ∗ gt where

gt(u) =
1

(2π)
d
2

e−
|u|2
2t .

Start of

lecture 19
Facts

(1) ‖f ∗ gt‖1 ≤ ‖f‖1.

(2) f ∗ gt is continuous.

(3) f ∗ gt is bounded.

(4) f̂ ∗ gt(w) = f̂(u)ĝt(u) = f̂(u)e−
t|u|2

2 .

(5) f̂ ∗ gt is bounded continuous.

(6) ‖f̂ ∗ gt‖1 ≤ ct‖f̂‖∞ ≤ ct‖f‖1.

(7) For µ a probability measure, and any t > 0, µ ∗ gt is a Gaussian convolution. Note
that

µ ∗ gt = µ ∗ (g t
2
∗ g t

2
) = (µ ∗ g t

2
)︸ ︷︷ ︸

∈L1

∗g t
2
.

Lemma. Fourier Inversion holds for Gaussian convolutions.
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Proof. Let f ∈ L1, t > 0. Then

(2π)df ∗ gt(x) = (2π)d
∫

f(x− y)gt(y)dy

=

∫
f9x− y) · (2π)dgt(y)dy

=

∫
f(x− y)

∫
ĝt(u)e

−i〈u,y〉dudy (Fourier Inversion)

=

∫∫
f(x− y)ĝt(u)e

−i〈u,y〉dudy

=

∫
ĝt(u)

(∫
f(x− y)e−〈u,y〉dy

)
du (Fubini-Tonelli)

=

∫
ĝt(u)

(∫
f(y)e−i〈u,x−y〉dy

)
du

=

∫
ĝt(u)e

−i〈u,x〉
(∫

f(y)ei〈u,y〉dy

)
du

=

∫
ĝt(u)e

−i〈u,x〉f̂(u)du

=

∫
ĝt(u)f̂(u)e

−〈u,x〉du

= f̂ ∗ gt(u)e−i〈u,x〉du

f ∗ gt as t → 0, f ∗ gt “→” f ∗ δ0 = f .

Lemma. Let f ∈ Lp(Rd), 1 ≤ p < ∞. Then ‖f ∗ gt − f‖p → 0 as t → 0.

Proof. Given ε > 0, there exists h ∈ Cc(Rd) (continuous functions with compact sup-
port), such that ‖f − h‖p ≤ ε

3 . Then by linearity of ∗,

‖f ∗ gt − h ∗ gt‖p = ‖ (f − h)︸ ︷︷ ︸
∈Lp

∗gt‖p ≤ ‖f − h‖p ≤
ε

3
.

So by Minkowski inequality,

‖f ∗ gt − f‖p ≤ ‖f ∗ gt − h ∗ gt‖p︸ ︷︷ ︸
≤ ε

3

+ ‖f − h‖p︸ ︷︷ ︸
≤ ε

3

+‖h ∗ gt − h‖p

≤ 2
ε

3
+ ‖h ∗ gt − h‖p

So it is enough to prove that ‖h ∗ gt − h‖p → 0. So h is bounded and h is supported on
[−M,M ]d say, for some M > 0. Define

e(y) =

∫
|h(x− y)− h(x)|pdx.
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Then as y → 0, |h(x− y)− h(x)|p → 0 as h is continuous. Also,

|h(x− y)− h(x)|p ≤ 2p‖h‖p∞1|x|≤M+1

for |y| < 1. Hence, by DCT, e(y) → 0 as y → 0. Also,

‖h ∗ gt − h‖pp =
∫ ∣∣∣∣∫ h(x− y)gt(y)dy −

∫
h(x)gt(y)dy

∣∣∣∣p dx
=

∫ ∣∣∣∣∫ (h(x− y)− h(x))gt(y)dy

∣∣∣∣p dx
≤
∫∫

|h(x− y)− h(x)|pgt(y)dydx (p ≥ 1, Jensen’s Inequality)

=

∫ (∫
|h(x− y)− h(x)|pdx

)
gt(y)dy (Fubini-Tonelli)

=

∫
e(y)gt(y)dy

=

∫
e(y)

1

td/2
g1

(
y√
t

)
dy

=

∫
e(
√
ty)g1(y)dy

→ 0 (DCT)

(e is bounded so e(
√
ty)g1 ≤ Cg1).

Theorem (Fourier Inversion). Let f ∈ L1(Rd) and f̂ ∈ L1(Rd). Then

f(x) =
1

(2π)d

∫
e−i〈u,x〉f̂(u)du

almost everywhere in Rd.

Proof. Consider f ∗ gt and

ft(x) =
1

(2π)d

∫
e−i〈x,u〉 f̂(u) e−

t|u|2
2︸ ︷︷ ︸

ĝt(u)︸ ︷︷ ︸
f̂∗gt(u)

du. (∗)

As Fourier Inversion holds for f ∗gt (f ∗gt is a Gaussian convolution), we have f ∗gt = ft.
So, ‖ft − f‖1

t→0−→ 0, i.e. there exists a subsequence tn ↓ 0 such that ftn → f almost
everywhere (so ft

P−→ f). But from (∗), as t → 0, e−i〈x,u〉f̂(u)e−t
|u|2
2 → ei〈x,u〉f̂(u) and
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bounded by |f̂(u)| which is integrable. So by DCT,

ft(x)
t→0−→ 1

(2π)d

∫
e−i〈x,u〉f̂(u)du

almost everywhere. Hence

f =
1

(2π)d

∫
e−i〈x,u〉f̂(u)du

almost everywhere.

Theorem (Plancherel). For f, g ∈ L1 ∩ L2(Rd),

‖f‖2 =
1

(2π)d/2
‖f̂‖2 and 〈f, g〉2 =

1

(2π)
d
2

〈f̂ , ĝ〉.

f 7→ f̂ .

Remark. Since L1 ∩ L2 is dense in L2, the linear operator

F0 : L
1 ∩ L2 → L2

F0(f) = (2π)−
d
2 f̂

extends to an isometry F : L2 → L2, which is an isometry by Fourier inversion
formula.

Start of

lecture 20 Proof. First assume f ∈ L1 with f̂ ∈ L1. Then (x, u) 7→ f(x)f̂(u) is dxdu-integrable.
So

(2π)d‖f‖22 = (2π)d
∫

f(x)f(x)dx

=

∫∫
f̂(u)e−i〈x,u〉f(x)dudx < ∞ (Fourier Inversion, and f ∈ L2)

=

∫
F̂ (u)

∫ f(x)ei〈x,u〉︸ ︷︷ ︸
f̂(u)

du (Fubini-Tonelli)

=

∫
f̂(u)f̂(u)du (Fourier transform)

= ‖f̂‖22 (∗)
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(Note: f ∈ L1 and f̂ ∈ L1 implies f ∈ L2 ∩ L∞). Now, let f ∈ L1 ∩ L2. For t > 0, take
ft = f ∗ gt

t→∞−→ f in L2 and so
‖ft‖2

t→0−→ ‖f‖2. (∗∗)

Also,
|f̂t(u)| = |f̂(u)ĝt(u)| = |f̂(u)|e−t

|u|2
2 ↑ |f̂(u)|

as t → 0.
‖f̂t‖22 =

∫
|f̂t(u)|2du

t→0−→
∫

|f̂(u)|2du = ‖f̂‖22 (†)

by Monotone Convergence Theorem But, ft = f ∗ gt ∈ L1, and f̂t ∈ L1. So by (∗),
(2π)d‖ft‖22 = ‖f̂t‖22. Let t → 0, then LHS → (2π)d‖f‖22 by (∗∗), and RHS → ‖f̂‖22 by
(??). Hence (2π)d‖f‖22 = ‖f̂‖22. Similar proof for 〈f, g〉.

Characteristic functions, weak convergence and the CLT

φX(t) = E(eitX) = µ̂X =

∫
ei〈t,x〉dµX(x)

For dirac measure δ0, δ̂0 =
∫
eitxdδ0(x) = 1 not integrable on R so Fourier Inversion

does not make sense. To circumvent this, we ‘test’ µ on nice test functions f .

Remark.

(0) 2 probability measures µ and ν on Rd coincide if and only if∫
fdµ =

∫
fdν (∗)

for all f ; : Rd → R bounded continuous (Example Sheet 2). In fat, enough to
have (∗) holds for all f ∈ C∞

c (space of infinitely differentiable functions with
compact support). (µ : C∞

c → R, f 7→ µ(f) linear, continuous (Lf top), hence µ
is “Schwarz distribution” A ◦ f , µ ∈ (C∞

c )∗).

Definition (Converges weakly). Let (µn), µ be Borel probability measures on Rd.
Then µn converges to µ weakly if∫

fdµn
n→∞−→

∫
fdµ (∗)

for all f : Rd → R bounded and continuous.
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Remark.

(1) For a sequence of random variables (Xn) and X another random variable,
Xn → X weakly if µXn → µX weakly.

(2) A sequence (µn) can have at most one weak limit (by Remark (0)).

(3) If Xn → X weakly, and h : Rd → Rk is continuous, then h(Xn) → h(X) weakly
(as random variables in Rk) (continuous mapping theorem) (from definition as
f ◦ h bounded continuous if f bounded continuous).

(4) Sufficient to check (∗) for all f ∈ C∞
c (“tightness” argument, i.e. there exists K

compact such that µn(K
c) < ε for all n if µn → µ weakly, see Example Sheet 4).

(5) When d = 1, this is equivalent to Xn → d−→ X (i.e. FXn(x) → FX(x) at all
points where x 7→ FX(x) is continuous). (Example Sheet 4) Rd, F (x1, . . . , xd) =
P(x ≤ (x1, . . . , xd)).

Theorem. Let X be a random variable on Rd. Then µX is uniquely determined
by µ̂X = φX . Further, if φX ∈ L1, then µX has a bounded continuous pdf given by

f(x) :=
1

(2π)d

∫
φX(u)e−i〈x,u〉du.

Proof. Take Z ∼ N(0, Id) independent of X. Thus
√
tZ has pdf gt and X+

√
tZ has pdf

µX ∗ gt =: ft. Then
f̂t(u) = µ̂X(u)ĝt(u) = φX(u)e−t

|u|2
2 .

So by Fourier Inversion of Gaussian convolution,

ft(x) =
1

(2π)d

∫
φX(u)e−t

|u|2
2 e−i〈u,x〉du ∀x

i.e. ft is uniquely determined by φX . Now for any g bounded continuous, g : Rd → R,
as t → 0, ∫

g(x)ft(x)dx = E(g(x+
√
tZ))

BCT−→ E(g(X)) =

∫
g(x)µX(dx) (∗)

i.e.
∫
g(x)dµX is uniquely determined by φX . Hence µX is uniquely determined by φX

(Remark (0)). If φX ∈ L1, then

φX(u)e−t
|u|
2 e−i〈u,x〉 t→0−→ φX(u)e−i〈u,x〉

65

http://www.dpmms.cam.ac.uk/study/II/Probability%2BMeasure/
http://www.dpmms.cam.ac.uk/study/II/Probability%2BMeasure/


By DCT, ft(x)
t→0−→ fX(t) for all x. In particular, fX(x) ≥ 0 for all x and |ft(x)| ≤

1
(2π)d

‖φX‖1. Then for any g bounded continuous with compact support,∫
g(x)ft(x)︸ ︷︷ ︸
→g(x)fX(x)

dx
DCT−→

∫
g(x)fX(x)dx

Also, LHS →
∫
f(x)µX(dx) from (∗). So∫

g(x)µX(dx) =

∫
g(x)fX(x)dx

for all g bounded continuous with compat support. Hence µX has density fX (Remark
(0)).

Theorem (Levy). Let (Xn), X be random variables on Rd with φXn(u) → φX(u)
for all u as n → ∞. Then Xn → X weakly.

Remark.

(1) Levy’s continuous theorem states that if φXn(u) → φ(u) for all u for some
function φ that is continuous in a neighbourhood of 0, then φ is the characteristic
function of some random variable X and Xn → X weakly.

(2) Cramér Wold device: Let (Xn), X be random variables on Rd, then Xn → X
weakly if and only if

〈u,Xn〉
weakly−→ 〈u,X〉 ∀u ∈ Rd

(hence φXn(u) → φX(u) by BCT and Levy).

Start of

lecture 21 Remark. For probability measures, if Xn to X weakly, then Ef(Xn) → Ef(X) for
all f bounded continuous.

Proof of Levy. Let g : Rd → R be compactly supported and Lipschitz continuous, i.e.

|g(x)− g(y)| ≤ Cg|x− y| ∀x, y ∈ Rd
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(any g ∈ C∞
c will do). Enough to show Eg(Xn) → Eg(X) (by Remark (4) last lecture).

Let Z ∼ N(0, Id) independent of (Xn), X. Then for fixed ε > 0, choose t small enough
so that

Cg
√
tE|Z| ≤ ε

3
.

Then,

|Eg(Xn)− Eg(X)| ≤ |Eg(Xn)− Eg(Xn +
√
tZ)|+ |Eg(X)− Eg(X +

√
tZ)|

+ |Eg(Xn +
√
tZ)− Eg(X +

√
tZ)|

≤ E|g(Xn)− g(Xn +
√
tZ)|+ E|g(X)− g(X +

√
tZ)|

+ |Eg(Xn +
√
tZ)− Eg(X +

√
tZ)|

≤ E|Cg
√
tZ|+ E|Cg

√
tEZ|+ |Eg(Xn + |sqrttZ)− Eg(X +

√
Z)|

≤ Cg
√
tE|Z|+ Cg

√
tE|Z|︸ ︷︷ ︸

≤2 ε
3

+|Eg(Xn +
√
tZ)− Eg(X +

√
tZ)|

Xn +
√
tZ has density µXn ∗ gt =: ft,n. Then by Fourier Inversion,

ft,n(x) =
1

(2π)d

∫
φXn(u)e

− t|u|2
2 e−i〈u,x〉du

So

Eg(Xn +
√
tZ) =

1

(2π)d

∫∫
g(x)φXn(u)e

− t|u|2
2 e−i〈u,x〉dudx

DCT−→
n→∞

1

(2π)d

∫∫
g(x)φX(u)e−

t|u|2
2 e−i〈u,x〉dudx

= E(X +
√
tZ)

(using g(x)e−
t|u|2

2 as the bounding function to apply DCT).

Theorem (Central Limit Theorem). Let (Xn) be IID random variables on R with
E(Xi) = 0, Var(Xi) = 1 for all i. Then for Sn = X1+ · · ·+Xn, we have, Sn√

n
→ Z ∼

N(0, 1) weakly or in distribution, i.e.

P
(
Sn√
n
≤ x

)
n→∞−→ P(Z ≤ x) ∀x

Proof. Set φ(u) = φX1(u) = EeiuX1 . Then φ(0) = 1 and since EX2
1 < ∞, we can

differentiate under the integral sign and get

φ′(u) = iEX1e
iuX1

φ′′(u) = i2EX2
1e

iuX1
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(see Example Sheet 3, Question 7.4), i.e. φ′(0) = 0, φ′′(0) = −1. By Taylor’s Theorem,
as u → 0, φ(u) = 1− u2

2 + o(u2). Let φn be the characteristic function of Sn√
n

. Then

φn(u) = Eeiu
Sn√
n

= Eei
u√
n
(X1+···+Xn)

IID
= (Eei

u√
n
X1)n

=

(
φ

(
u√
n

))n

=

(
1− u2

2n
+ o

(
u2

n

))n

=

(
1− u2

2n
+ o

(
1

n

))n

(as u fixed, n → ∞). The complex logarithm satisfies, as z → 0, log(1 + z) = z + o(z).
So,

log φn(u) = n log

(
1− u2

2n
+ o

(
1

n

))
= n

(
−u2

2n
+ o

(
1

n

))
= −u2

n
+ o(1)

So, φn(u) → e−
u2

2 = φZ(u). So by Levy, Sn√
n
→ Z weakly.

Remark. The Central Limit Theorem in Rd can be proved similarly using the
Cramér Wold device and properties of multivariate Gaussians (Exercise).

A random variable on R is Gaussian (N(µ, σ2)) if it has density 1√
2πσ

e−
(x−µ)2

2σ2 for µ ∈ R,
σ > 0.

Definition. X in Rd is Gaussian if

〈u,X〉 =
d∑

i=1

uiXi

is Gaussian for all u ∈ Rd.
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Example. If X1, . . . , Xn
IID∼ N(0, 1), then X = (X1, . . . , Xn) is Gaussian in Rn.

Proposition. Let X be Gaussian in Rn and A be an m× n matrix, b ∈ Rm. Then

(a) AX + b is Gaussian in Rm.

(b) X ∈ L2 and µX is determined by E(X) = µ and (Cov(Xi, Xj))i,j = V .

(c) φX(u) = ei〈u,µ〉−
〈u,V u〉

2 for all u ∈ Rn.

(d) If V is invertile, then X has a pdf on Rn given by

fX(x) =
1

(2π)n/2
1

|V |1/2
e−〈x−µ,V −1(x−µ)〉/2

(e) If X = (X1, X2) with X1 ∈ Rn1 , X2 ∈ Rn2 , (n1 + n2 = n), then X1, X2

independent if and only if Cov(X1, X2) = 0.

Proof. Easy. Also see Example Sheet 4 and lecturer’s online notes.

Law of Large Numbers

Weak Law of Large Numbers: For (Xi) IID with EXi = µ, Var(Xi) < ∞. Then ∀ε > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − µ

∣∣∣∣∣ > ε

)
≤ 1

n2ε2
Var

(
n∑

i=1

Xi

)

=
�nVar(X1)

n�2ε2

→ 0

as n → ∞. So,
1

n

n∑
i=1

Xi
P−→ µ

Strong Law of Large Numbers: if (Xi) are IID, E(X1) = µ < ∞, then

1

n

n∑
i=1

Xi → µ

almost surely as n → ∞.
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Start of

lecture 22 Proposition. Let (Xn) be independent with EXn = µ and EX4
n ≤ M for all n.

Then
Sn

n
→ µ

almost surely as n → ∞ (where Sn = X1 + · · ·+Xn).

Proof. Let X ′
n = Xn − µ. Then

EX ′4
n ≤ 24(EX4

n + µ4) ≤ 24(M + µ4)︸ ︷︷ ︸
=M ′

∀n.

So we assume that µ = 0 (without loss of generality). Then using independence, for
distinct indices i, j, k, l,

0 = E(XiX
3
j ) = E(XiXjX

2
k) = E(XiXjXkXl)

Hence,

E(S4
n) = E(X1 + · · ·+Xn)

4

= E

 ∑
1≤i≤n

X4
i + 6

∑
1≤i<j≤n

X2
i X

2
j


≤ nM + 6

n(n− 1)

2
≤ nM + 3n(n− 1)

≤ 3n2M

But
E(X2

i X
2
j )

C-S
≤
√
EX4

i X
4
j ≤ M,

i.e.

E

((
Sn

n

)4
)

≤ 3M

n2

Now,

E

( ∞∑
n=1

(
Sn

n

)4
)

Monotone Convergence Theorem
=

∞∑
n=1

E
(
Sn

n

)4

≤
∑
n

3M

n2
< ∞.

So,
∞∑
n=1

(
Sn

n

)4

< ∞

almost surely. Hence
(
Sn
n

)4 → 0 almost surely, i.e. Sn
n → 0 almost surely.
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6 Ergodic Theory

Definition (Measure preserving map). Let (E, E , µ) be a σ-finite measure space.
A measurable map θ : E → E is called (µ-)measure-preserving (m.p.) if

µ ◦ θ−1 = µ,

i.e. µ(θ−1(A)) = µ(A) for all A ∈ E . In this case, for all f ∈ L1,∫
E
fdµ =

∫
E
f ◦ θdµ =

∫
fdµ ◦ θ−1

Definition (θ-invariant). A set A ∈ E is θ-invariant if θ−1(A) = A.

Definition (θ-invariant function). A measurable function f is θ-invariant if f =
f ◦ θ.

The space of all θ-invariant sets Eθ is a σ-algebra and f is θ-invariant if and only if f is
Eθ-measurable (exercise on Example Sheet 4).

Definition (Ergodic map). The map θ is called ergodic if Eθ is µ-trivial, i.e. ∀A ∈ Eθ,
µ(A) = 0 or µ(Ac) = 0. “well-mixed”.

Boltzman (1880) Ergodic hypothesis for dynamical systems
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“space filling”. For Markov chains, ergodicity ⇐⇒ irreducibility.

Fact: If f : E → R is θ-invariant, θ Is ergodic if and only if f = c, a constant, almost
surely (exercise on Example Sheet 4). (µ(f−1(−∞, x)) = 0 or µ(f−1[x,∞)) = 0).

Example. On ((0, 1],B, λ(0,1]) the maps

(1) θa(x) = x+ a (mod 1) (rotation of a circle).

(2) θ(x) = 2x (mod 1)

are measure preserving and ergodic unless a ∈ Q (see Example Sheet 4).

Theorem (Birkhoff’s ergodic theorem (1931)). SUppose (E, E , µ) is σ-finite and
f ∈ L1(E, E , µ) and θ : E → E measure preserving. Define S0 = 0 and

Sn = Sn(f) = f + f ◦ θ + f ◦ θ2 + · · ·+ f ◦ θn−1.

Then there exists a θ-invariant function f with µ(|f |) ≤ µ(|f |) such that Sn(f)
n → f

almost everywhere as n → ∞.

Remark. If θ is ergodic, f = c almost everywhere.

72

http://www.dpmms.cam.ac.uk/study/II/Probability%2BMeasure/
http://www.dpmms.cam.ac.uk/study/II/Probability%2BMeasure/


Lemma (Maximal ergodic theorem). For f ∈ L1(µ), set S∗ = S∗(f) = supn≥0 Sn(f).
Then ∫

{S∗>0}
fdµ ≥ 0.

Proof. Set S∗
n = max0≤m≤n Sm. Then for m = 1, 2, . . . , n+ 1,

Sm = f + Sm−1 ◦ θ ≤ f + S∗
n ◦ θ

(as for m = 1, . . . , n+ 1, Sm−1 ≤ S∗
n, hence Sm−1 ◦ θ ≤ S∗

n ◦ θ). On An := {S∗
n > 0}, we

have
S∗
n = max

1≤m≤n
Sm ≤ max

1≤m≤n+1
Sm ≤ f + S∗

n ◦ θ

So integrating, ∫
An

S∗
ndµ ≤

∫
An

fdµ+

∫
An

S∗
n ◦ θdµ (1)

On Ac
n, we have S∗

n = 0 ≤ S∗
n ◦ θ (as S∗

n ≥ 0 since S0 = 0). Thus,∫
Ac

n

S∗
ndµ ≤

∫
Ac

n

S∗
n ◦ θdµ (2)

Then (1) + (2) gives ∫
E
S∗
ndµ ≤

∫
An

fdµ+

∫
E
S∗
n ◦ θdµ

i.e. ∫
S∗
ndµ ≤

∫
An

fdµ+

∫
S∗
ndµ

Hence, (as S∗
n ∈ L1),

∫
An

fdµ ≥ 0 (∗) for all n.

An = {S∗
n > 0} = { max

0≤m≤n
Sm > 0} =

n⋃
m=0

{Sm > 0} ↑
∞⋃

m=0

{Sm > 0} = {supSm︸ ︷︷ ︸
=S∗

> 0}.

Hence f1An → f1(S∗>0). Hence (as |f1An | ≤ |f | and f ∈ L1) by DCT (and using (∗)),

0 ≤
∫
An

fdµ →
∫
(S∗>0)

fdµ

Hence
∫
fdµ ≥ 0.
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Remark. Let µ be a finite measure. Then for f ∈ L1 and any α > 0, define
Sk = Sk(f)

k and S
∗
= supk≥0 Sk, then

µ(S
∗
> α)︸ ︷︷ ︸

µ(sup
k≥0

Sk︸ ︷︷ ︸
≥S1=f

>α)

≤ 1

α

∫
{S∗

>α}
fdµ ≤ 1

α

∫
|f |dµ

Proof. Exercise.

µ(f > α) ≤
∫
|f |dµ
α is Markov.

Remark. For µ a probability maesure and f ∈ L1(µ), show that
{

Sn(f)
n : n ∈ N

}
is UI (exercise). Hence Sn(f)

n
L1

−→ f . If θ ergodic, f =
∫
fdµ almost surely.

Start of

lecture 23 Theorem (Birkhoff’s Ergodic Theorem). (E, E , µ) σ-finite and f ∈ L1(µ) and θ :
E → E is measure preserving. S0 = 0 and

Sn = Sn(f) = f + f ◦ θ + f ◦ θ2 + · · ·+ f ◦ θn−1 = f + Sn−1 ◦ θ.

Then there exists a θ-invariant f with µ(|f |) ≤ µ(|f |) such that Sn
n → f almost

everywhere as n → ∞.

Lemma (Maximal Ergodic lemma). For f ∈ L1(µ) and S∗ = supn≥0 Sn(f), we
must have ∫

{S∗>0}
fdµ ≥ 0.

Proof.

µ(|Sn|) ≤
n−1∑
i=0

µ(|f ◦ θi|) θ measure preserving
=

n−1∑
i=1

µ(|f |) = n|f |
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So µ
(∣∣Sn

n

∣∣) ≤ µ(|f |). So

µ(|f |) = µ

(
lim inf

∣∣∣∣Sn

n

∣∣∣∣) Fatou’s Lemma
≤ lim inf µ

(∣∣∣∣Sn

n

∣∣∣∣) ≤ µ(|f |).

Note that Sn◦θ
n = Sn+1−f

n+1 × n+1
n , so lim sup Sn

n ◦ θ = lim sup Sn+1

n+1 = lim sup Sn
n . Similarly,

lim inf Sn
n ◦ θ = lim inf Sn

n . For a < b,

D = D(a, b) =

{
lim inf

n

(
Sn

n

)
< a < b < lim sup

n

(
Sn

n

)}
is θ-invariant. Shall show µ(D) = 0.

∆ =

{
lim inf

(
Sn

n

)
< lim sup

(
Sn

n

)}
=
⋃

a,b∈Q
a<b

D(a, b)

Hence if µ(D) = 0 for all a < b, then

µ

 ⋃
a,b∈Q
a<b

D(a, b)

 = 0 =⇒ µ(∆) = 0.

Define

f =

{
lim inf

(
Sn
n

)
= lim sup

(
Sn
n

)
on ∆c

0 on ∆

Then Sn
n → f µ almost everywhere and f is θ-invariant (as lim inf Sn

n is θ-invariant and
∆ is θ-invariant).

Fix a < b. Note that θ : D → D by invariance and θ is µ|D-measure preserving. Also,
either b > 0 or a < 0 (if a < 0, change f to −f , b to −a, a to −b, then b = −a > 0).
So assume b > 0 without loss of generality. Shall apply Maximal Ergodic lemma on D
with µ|D. For any B ⊆ D measurable and µ(B) < ∞, let g = f − b1B. Then g ∈ L1,
and on D,

Sn(g) = Sn(f)− bSn(1B) ≥ Sn(f)− nb > 0

for some n. Hence, S∗(g) = supn≥0 Sn(g) > 0 on D. Hence

{S∗(g).0} ∩D = D.

Thus by Maximal Ergodic lemma on D,
∫
{S∗(g)>0}∩D gdµ ≥ 0, i.e.

0 ≤
∫
D
(f − b1B)dµ =

∫
D
fdµ− bµ(B)
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hence bµ(B) ≤
∫
D fdµ. Since µ is σ-finite, there exists (Bn) measurable sets, Bn ↑ D

and µ(Bn) < ∞ for all n. Hence

bµ(D) = bµ(Bn) ≤
∫
D
fdµ < ∞

(as f ∈ L1). Hence µ(D) < ∞. A similar argument applied to (−f) and (−a) will give

(−a)µ(D) ≤
∫
D
(−f)dµ

(just take D instead of B now, (−f)− (−a)1D). Hence

bµ(D) ≤
∫
D
fdµ ≤ aµ(D)

But a < b. As µ(D) < ∞, hence µ(D) = 0.

Theorem (von Neumann’s Lp Ergodic Theorem). Let µ(E) < ∞ and 1 ≤ p < ∞.
Then for f ∈ Lp(µ),

Sn(f)

n
→ f

in Lp as n → ∞.

Proof. For any f ∈ Lp(µ), ‖f ◦ θn‖p = ‖f‖p as θ is µ measure preserving. So by
Minkowski inequality, ∥∥∥∥Sn(f)

n

∥∥∥∥
p

≤ 1

n

n−1∑
i=0

‖f ◦ θ1‖p︸ ︷︷ ︸
=‖f‖p

= ‖f‖p

Now, let ε > 0 be given, then choose K < ∞ such that ‖f − fK‖p < ε
3 where fK =

(−K) ∨ f ∧ (K).(
‖f − fK‖pp =

∫
|f − fK |pdµ ≤

∫
|f |p1|f |>Kdµ

DCT−→ 0

)
But fK is bounded and µ a finite measure, so fK ∈ L1(µ), hence by Birkhoff’s Ergodic
Theorem, there exists fK ∈ L1 such that Sn(fK)

n → fK almost everywhere. Again,
f ∈ Lp(µ) ⊂ L1(µ) (as µ is a finite measure), so by Birkhoff, there exists f ∈ L1 such
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that Sn(f)
n → f almost everywhere as n → ∞. Then

‖f − fK‖pp =
∫

|f − fK |pdµ

=

∫
lim inf

n

∣∣∣∣Sn(f)

n
− Sn(fK)

n

∣∣∣∣p dµ
=

∫
lim inf

n

∣∣∣∣Sn(f − fK)

n

∣∣∣∣p dµ
≤ lim inf

∫ ∣∣∣∣Sn(f − fK)

n

∣∣∣∣p dµ Fatou’s Lemma

= lim inf
n

∥∥∥∥Sn(f − fK)

n

∥∥∥∥p
p

Then∥∥∥∥Sn

n
− f

∥∥∥∥
p

Fatou’s Lemma
≤

∥∥∥∥Sn(f)

n
− Sn(fK)

n

∥∥∥∥
p

+ ‖f − fK‖p +
∥∥∥∥Sn(fK)

n
− fK

∥∥∥∥
p

=

∥∥∥∥Sn(f − fK)

n

∥∥∥∥
p︸ ︷︷ ︸

=‖f−fK‖p≤ε/3

+ ‖f − fK‖p︸ ︷︷ ︸
≤ε/3

+

∥∥∥∥Sn(fK)

n
− fK

∥∥∥∥
p︸ ︷︷ ︸

→0

so Sn
n → f in Lp as n → ∞ as desired.

Start of

lecture 24 Birkhoff: (E, E , µ) σ-finite, f ∈ L1(µ) and θ measure preserving, and Sn(f) = f + f ◦
θ + · · · + f ◦ θn−1. Then there exists a θ-invariant f such that Sn(f)

n → f as n → ∞ µ
almost everywhere.

Von Neumann: µ is finite, then Sn(f)
n → f in L1 as n → ∞.
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Remark.

(1) If µ a probability measure and θ ??, then f is a constant almost surely, so
f =

∫
fdµ =

∫
fdµ. Also,∫

fdµ =

∫
Sn(f)

n
dµ →

∫
fdµ.

Hence inf fdµ =
∫
fdµ. Then, Sn(f)

n → E(f) as n → ∞ µ almost surely and in
L1.

(2) For θ measure preserving and f ∈ L1, Sn(f)
n → E(f | E0) µ almost surely in L1

as n → ∞. For f ∈ L2, just (a version of) the projection of f on L2(E0).

Bernoulli Shifts and Strong Law of Large Numbers

On the infinite product space E = RN = {x = (x1, x2, . . .) : xi ∈ R∀i} consider the
cylinder sets

A =

{ ∞∏
n=1

An : An ∈ B = B(R)∀n,&An = R∀n ≥ N for some N ∈ N

}
.

For example,
(0, 1) ∩ R ∩ R ∩ · · · ∈ A

whereas
(0, 1) ∩ (0, 1) ∩ (0, 1) ∩ · · · /∈ A.

Then A is a π-system and E = σ(A). Check:

• E = σ(A) = σ(fn : n ∈ N) where fn : E → R, fn(x) = xn are the coordinate maps.

• E is the Borel σ-algebra generated by the toplogy of poinwise convergence.

Now consider a sequence of IID random variables (Xn)n∈N on some probability space
(Ω,F ,P), (such a sequence always exists), with the common distribution or law µXn = P◦
X−1

n = m∀n. The map X : (Ω,F) → (E, E), X(ω) = (X1(ω), X2(ω), . . .) is measurable.

The image measure P ◦ X−1 =: µ is a probability measure on (E, E), that satisfies for
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any A = A1 × · · · ×An × R× · · · ∈ A,

µ(A) = P ◦X−1(A)

= P(X1 ∈ A,X2 ∈ A2, . . . , XN ∈ AN )

= P(X1 ∈ A1)P(X2 ∈ A2) · · ·P(XN ∈ AN ) as Xi IID
= m(A1)m(A2) · · ·m(An)

=
∞∏
n=1

m(An)

and µ is the unique probability measure on E such that

µ(A) =

∞∏
n=1

m(An).

Under µ, the coordinate maps fn are IID with law m.

The probability space (E, E , µ) is called the canonical model for an IID sequence of
random variables with law m. Define the shift map θ : E → E by θ(x1, x2, . . .) =
(x2, x3, . . .) (similar to x → 2x (mod 1) on ((0, 1), λ)).

Theorem. On (E, E , µ), the shift map θ is measurable, measure preserving and
ergodic.

Proof. Measurable is obvious. measure preserving? Enough to check on A, i.e. for
A = A1 × · · · ×An × R× · · · . Indeed:

µ ◦ θ−1(A)

= µ(R×A1 ×A2 × · · · )

=

∞∏
i=1

m(Ai)

= µ(A)

Ergodicity: Recall the tail σ-algebra

τ =
⋂
n

τn

where τn = σ(xn+1, xn+2, . . .) = σ(fn+1, fn+2). For A =
∏

nAn ∈ A,

θ−n(A) = R× · · · × R×A1 × · · · = {xn+1 ∈ A1, xn+2 ∈ A2, . . .} ∈ τn ∀n,∀A ∈ A

If A ∈ E0, then θ−1(A) = A, so θ−n(A) = A for all n. So A =∈ τn for all n. So
A ∈

⋂
n τn = τ , i.e. E ⊆ τ . But the (xi) IID and hence τ is µ-trivial (Kolmogorov 0− 1

law), so E0 is µ-trivial.
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Theorem. Let m be a probability measure on R such that
∫
R |x|dm(x) < ∞ and∫

R xdm(x) = ν. Let (E, E , µ) be the canonical model, where the coordinate maps
fn(x) = xn are IID with law m. Then

µ

({
x :

x1 + · · ·+ xn
n

→ ν as n → ∞
})

= 1.

Proof. Let θ : E → E be the shift map θ(x1, x2, . . .) = (x2, x3, . . .). It is measure
preserving and ergodic. Consider f : E → R as f(x) = x1. Then f ∈ L1(µ) as∫
|f |dµ =

∫
|x1|dm(x1) < ∞. Also,

Sn(f) = f + f ◦ θ + · · ·+ f ◦ θn−1 = x1 + x2 + · · ·+ xn.

Hence by Birkhoff and von Neumann, as θ ergodic, by Remark (1) earlier this lecture,

Sn(f)

n
=

x1 + · · ·+ xn
n

→ f =

∫
fdµ

∫
x1dm(x1) = ν

µ almost surely.

Theorem (Kolmogorov Strong Law of Large Numbers (1930)). Let (Xn) be a se-
quence of IID integrable random variables, with EX1 = ν. Set Sn =

∑n
i=1Xi. Then

Sn
n → ν almost surely as n → ∞.

Proof. Let m be the law of Xn, µ = P◦X−1 where X : Ω → E is X(ω) = (X1(ω), X2(ω), . . .).
Then apply the previous theorem.

This is the end of the course.

Remark.

(1) If (µn) is a sequence of probability measures that converges weakly to µ, then
(µn) is “tight”, i.e. ∀ε > 0, ∃ a compact set K such that µn(K

c) < ε for all n.

(2) If (µn) is a sequence of probability measures that are tight, then there exists
a subsequence (nk) and a probability measure µ such that (µnk

) → µ weakly
(Banach-Alaoglu Theorem) (Prokhorov Theorem).
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characteristic function 56, 58, 66, 67

converges in distribution 27

weakly 64, 80

convex 44

C∞
c 64

?? : ergeodic 77

ergodic 71, 72, 74, 79, 80

eventually 16

convolution 57

FT of f 55, 56, 58, 59, 60, 62, 63, 64, 65
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Gaussian convolution 59, 60, 62, 65
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gt 59, 60, 61, 62, 63, 64, 65, 67

independent 15, 26, 27

independent 23, 24, 25, 26, 27, 28, 41

independent 15, 28

integrable 30, 31

i.o 16, 26, 27

measure preserving 71, 72, 74, 75, 76, 77, 79

⊗ 39, 40, 41, 42

⊗ 38, 40, 41, 57

Rademacher function 24

simple 29, 30, 31, 32

tail σ-algebra 27, 28, 79

τ 27, 28, 79

θ-invariant 71, 75

θ-invariant 71, 72, 74, 75, 77

uniformly integrable 51

UI 51, 52, 53, 54, 74

weakly 64, 66, 67, 68
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