\setlength{\parindent}{0pt} \setlength{\parskip}{1em} { \renewtheorem{customlemma}{Lemma}[section] \renewtheorem{customtheorem}[customlemma]{Theorem} \renewtheorem{customproposition}[customlemma]{Proposition} \renewtheorem{customcorollary}[customlemma]{Corollary} \renewtheorem{customdefinition}[customlemma]{Definition} \renewtheorem{customconjecture}[customlemma]{Conjecture} % \renewtheorem{customexample}{Example} % \renewtheorem{customremark}[customexample]{Remark} } \DeclareMathOperator\li{li} \newcommand\gmod[1]{\glshyperlink[\ensuremath{\langle #1 \rangle}]{gmod_brackets_notation}} \newcommand\munum{\mu} \newcommand\legendre[2]{\glshyperlink[\ensuremath{\left( \frac{#1}{#2} \right)}]{leg_symb}} \newcommand\jacobi[2]{\glshyperlink[\ensuremath{\left( \frac{#1}{#2} \right)}]{jac_symb_notation}} \newcommand\divides{\glshyperlink[\ensuremath{\mid}]{divides_mid_notation}} \newcommand\ndivides{\glshyperlink[\ensuremath{\nmid}]{doesnt_divide_mid_notation}} \let\oldgcd\gcd \renewcommand\gcd{\glshyperlink[\ensuremath{\oldgcd}]{gcd_notation}} \def\gcdbrack(#1){\glshyperlink[\ensuremath{(#1)}]{gcd_notation}} \renewcommand\eslink{http://www.dpmms.cam.ac.uk/study/II/NumberTheory/} \let\oldpmod\pmod \let\oldbmod\bmod \renewcommand\pmod[1]{\glshyperlink[\ensuremath{\oldpmod{#1}}]{mod_notation}} \renewcommand\bmod[1]{\glshyperlink[\ensuremath{\oldbmod{#1}}]{mod_notation}} \newcommand\totient{\glshyperlink[\ensuremath{\phi}]{totient_func_notation}} \newcommand\mult[1]{\glshyperlink[\ensuremath{#1^\times}]{mult_notation}} \def\multbrack(#1){\mult{(#1)}} \newcommand\disc{\operatorname{disc}} \newcommand\swap{\glshyperlink[\ensuremath{S}]{pdbqf_swap_notation}} \newcommand\translate{\glshyperlink[\ensuremath{T}]{pdbqf_translate_notation}} \def\bqfb(#1, #2, #3){\glshyperlink[\ensuremath{(#1, #2, #3)}]{bqf_brack_notation}} \newcommand\clsnum{h} \newcommand\pc{\glshyperlink[\ensuremath{\pi}]{prime_counting_notation}} \newcommand\pcmod{\glshyperlink[\ensuremath{\pi}]{prime_counting_modulo_notation}} \newcommand\zetafn{\glshyperlink[\ensuremath{\zeta}]{zeta_fn_notation}} \newcommand\sigmareal{\glshyperlink[\ensuremath{\sigma}]{sigmareal_notation}} \newcommand\Gammafn{\glshyperlink[\ensuremath{\Gamma}]{Gamma_fn_notation}} \newcommand\xifn{\glshyperlink[\ensuremath{\xi}]{xi_fn_notation}} \newcommand\conv{\glshyperlink[\ensuremath{*}]{d_conv_notation}} \newcommand\sigmafactorsum{\glshyperlink[\ensuremath{\sigma}]{sum_of_factors_notation}} \newcommand\mobius{\glshyperlink[\ensuremath{\mu}]{mobius_function_notation}} \newcommand\allone{\mathbbm{1}} \newcommand\ddelta{\delta} \newcommand\vonmongoldt{\glshyperlink[\ensuremath{\Lambda}]{von_mongoldt_notation}} \newcommand\padic{\glshyperlink[\ensuremath{\nu}]{p_adic_notation}} \newcommand\primorial{\glshyperlink[\ensuremath{P}]{primorial_notation}} \def\fcontf[#1]{\directlua{require("preamble").create_continued_fraction("\luaescapestring{#1}")}} \def\calccontf[#1]{\directlua{require("preamble").calculate_continued_fraction("\luaescapestring{#1}")}} \def\contf[#1]{[#1]} \newcommand\acf{\glshyperlink[\ensuremath{a}]{acf_notation}} \newcommand\simto{\stackrel{\sim}{\longrightarrow}} \newcommand\rcring[1]{\glshyperlink[\ensuremath{\ol{#1}}]{recurring_cfe_notation}}