%! TEX root = NT.tex % vim: tw=50 % 25/10/2023 10AM Motivating question: Which integers can be expressed as $x^2 + y^2$, $x^2 + 2y^2$? \begin{flashcard}[bqf-defn] \begin{definition}[BQF] \glsnoundefn{bqform}{binary quadratic form}{binary quadratic forms} \glsnoundefn[bqform]{bqf}{BQF}{BQFs} \cloze{ A \emph{binary quadratic form} (BQF) is a polynomial $f(x, y) = ax^2 + bxy + cy^2$ where $a, b, c \in \ZZ$. \glsverbdefn{bqf_rep}{represent}{\gls{bqform}} If $N \in \ZZ$, we say $f$ \emph{represents} $N$ if $\exists m, n \in \ZZ$ such that $f(m, n) = N$. } \end{definition} \end{flashcard} \begin{notation*} \glssymboldefn{bqf_brack}{(a, b, c)}{(a, b, c)} \glssymboldefn{bqf_matrix}{(a, b/2, b/2, c)}{(a, b/2, b/2, c)} We will sometimes identify $f$ with the tuple $(a, b, c)$, or with the matrix \[ \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} \] This is because we can write \[ f(x, y) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \] \end{notation*} \begin{example*} \[ f(x, y) = x^2 + y^2 \leftrightarrow (1, 0, 1) \leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] \[ g(x, y) = 4x^2 + 12xy + 10y^2 \leftrightarrow \bqfb(4, 12, 0) \leftrightarrow \begin{pmatrix} 4 & 6 \\ 6 & 10 \end{pmatrix} \] \end{example*} \vspace{-1em} Key idea: study the effect on \glspl{bqform} of changes of variable. Using the functions as in the example above, we have \[ g(x, y) = (2x + 5y)^2 + y^2 = f(2x + 3y , y) .\] However, $f$ and $g$ do not represent the same sets of integers (as e.g. $g$ can only represent event integers wheres $f$ represents $1$). \begin{flashcard}[unimodular-change-of-variables-defn] \begin{definition}[Unimodular change of variables] \glsnoundefn{unimod_cv}{unimdular change of variables}{unimodular changes of variables} \glsadjdefn{equiv_bqf}{equivalent}{\gls{bqform}} \glsnoundefn[equiv_bqf]{bqf_equiv_class}{equivalence class}{equivalence classes} \phantom{} \begin{enumerate}[(1)] \item \cloze{A unimodular change of variables is one of the form $X = \alpha x + \gamma y$, $Y = \beta x + \delta y$, where $\alpha, \beta, \gamma, \delta \in \ZZ$ with $\alpha \delta - \beta \gamma = 1$.} \item \cloze{We say that two \glspl{bqf} $f(x, y)$, $g(x, y)$ are \emph{equivalent} if there exists a \gls{unimod_cv} such that $g(x, y) = f(X, Y) = f(\alpha x + \gamma y, \beta x + \delta y)$. Equivalently, if there exists $A \in \SL_2(\ZZ)$ such that $g(x, y) = f((x, y)A)$.} \end{enumerate} \end{definition} \end{flashcard} \begin{remark*} $X = 2x + 3y$, $Y = y$ is \emph{not} aunimodular change of variables, since \[ \det \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} = 2 \neq 1 .\] \glsref[equiv_bqf]{Equivalence} of \glspl{bqf} is an equivalence relation. This is because $\SL_2(\ZZ)$ is a group (so for example, symmetry comes from the fact that inverses exist). $\SL_2(\ZZ)$ acts on the set of \glspl{bqf} via $(A \cdot f)(x, y) = f((x, y)A)$. Two forms $f$ and $g$ are \gls{equiv_bqf} if and only if they're in the same $\SL_2(\ZZ)$-orbit. If $f, g$ are \gls{equiv_bqf} \gls{bqform}, then they \gls{bqf_rep} the same sets of integers. This is because by symmetry, we need to show that if $g(x, y) = f(\alpha x + \gamma y, \beta x + \delta y)$, and $g$ \glsref[bqf_rep]{represents} $N$, then $f$ also \glsref[bqf_rep]{represents} $N$. \end{remark*} \begin{flashcard}[bqf-discriminant-defn] \begin{definition}[\gls{bqf} discriminant] \glsadjdefn{disc_bqf}{discriminant}{\gls{bqform}} \glssymboldefn{disc_bqf}{disc}{disc} \cloze{ The \emph{discriminant} of a \gls{bqform} $f = \bqfb(a, b, c)$ is \[ \disc f = b^2 - 4ac .\] } \end{definition} \end{flashcard} \begin{flashcard}[equiv-bqf-same-disc-lemma] \begin{lemma} \Gls{equiv_bqf} \glsref[bqf]{forms} have the same \gls{disc_bqf}. \end{lemma} \begin{proof} \cloze{ We need to check that $\disc f = \disc (A \cdot f)$ if $f = \bqfb(a, b, c)$, $A \in \SL_2(\ZZ)$. If $f = \bqfb(a, b, c)$, then \[ f \leftrightarrow \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} \] which has determinant $ac - \frac{b^2}{4} = -\quarter \disc f$. We have \[ f(x, y) = (x, y) \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} \] \[ (A \cdot f) (x, y) = f((x, y) A) = (x, y) A \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} \] so \[ A \cdot f \leftrightarrow A \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} A^\top \] Therefore \[ \det \left( A \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} A^\top \right) = \det(A) \det \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} \det (A) = \det \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} \qedhere \] } \end{proof} \end{flashcard} \begin{remark*} Converse does not hold: $x^2 + 6y^2$, $2x^2 + 3y^2$ have the same \gls{disc_bqf} ($-24$), but not \gls{equiv_bqf} as they do not \gls{bqf_rep} the same integers (the first \glsref[bqf]{form} \glsref[bqf_rep]{represents} $1$, whereas the second does not). \end{remark*} \begin{lemma} % Lemma 3.6 Let $d \in \ZZ$. Then there exist \glspl{bqf} of \gls{disc_bqf} $d$ if and only if $d \equiv 0 \text{ or } 1 \pmod{4}$. \end{lemma} \begin{proof} If $d = \disc f$, $f = \bqfb (a, b, c)$, then $d = b^2 - 4ac \equiv b^2 \pmod{4}$. So must be $0$ or $1$ \gls{modulo} $4$. If $d \equiv 0 \pmod{4}$, then $x^2 - \frac{d}{4} y^2$ is a \gls{bqf} of \gls{disc_bqf} $d$. If $d \equiv 1 \pmod{4}$, then $x^2 + xy + \frac{1 - d}{4} y^2$ is a \gls{bqf} of \gls{disc_bqf} $d$. \end{proof} \begin{flashcard}[pdbfq-defn] \begin{definition} Let $f(x_1, \ldots, x_n) = \sum_{i \le j} a_{ij} x_i x_j$ be a (real) quadratic form, $a_{ij} \in \RR$. We say $f$ is: \glsadjdefn{pos_def}{positive definite}{quadratic form} \glsadjdefn{neg_def}{negative definite}{quadratic form} \glsadjdefn{indef}{indefinite}{quadratic form} \begin{itemize} \item \emph{positive definite} \cloze{if $\forall \mathbf{v} \in \RR^n - \{0\}$, $f(\mathbf{v}) > 0$.} \item \emph{negative definite} \cloze{if $\forall \mathbf{v} \in \RR^n - \{0\}$, $f(\mathbf{v}) < 0$.} \item \emph{indefinite} \cloze{if $\exists \mathbf{v}, \mathbf{w} \in \RR^n$ such that $f(\mathbf{v}) > 0$, $f(\mathbf{w}) < 0$.} \end{itemize} \end{definition} \end{flashcard} \begin{proposition} Let $f(x, y) = ax^2 + bxy + cy^2$ be a \gls{bqf} of \gls{disc_bqf} $d \in \ZZ$. Then: \begin{enumerate}[(1)] \item If $d < 0$, $a > 0$, then $f$ is \gls{pos_def}. If $d < 0$, $a > 0$, $f$ is \gls{neg_def}. \item If $d > 0$, $f$ is \gls{indef}. \item If $d = 0$, then $\exists l, m, n \in \ZZ$ such that $f(x, y) = l(mx + ny)^2$. \end{enumerate} \end{proposition} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item If $d < 0$, then $a \neq 0$ and \[ 4f(x, y) = 4a^2x^2 + 4abxy + 4acy^2 = (2ax + by)^2 + (4ac - b^2)y^2 = (2ax + by)^2 - dy^2 .\] So $4af(x, y)$ is \gls{pos_def}. \item If $d > 0$, then we can factor $f(x, 1) = a(x - \alpha)(x - \beta)$, $\alpha, \beta \in \RR$, provided $a \neq 0$, using the quadratic formula. Since $d \neq 0$, $\alpha \neq \beta$, so we can assume $\alpha < \beta$. If $v, w \in \RR$, $v < \alpha$, $w \in (\alpha, \beta)$, then $f(v, 1)$ and $f(w, 1)$ are non-zero real numbers of opposite signs. So $f$ is \gls{indef}. If $a = c = 0$, then $f(x, y) = bxy$ with $b \neq 0$, clearly \gls{indef}. \item If $d = 0$, then $b^2 = 4ac$. Write $a = a_1 a_2^2$, $a_1, a_2 \in \ZZ$ squarefree. Then $b^2 = 4a_1 a_2^2 c$, so $a_1 c$ is a square, so $a_1 \divides c$, $c = a_1 z^2$, $z \in ZZ$. Then $f(x, y) = ax^2 + bxy + cy^2 = a_1 a_2^2 x^2 + bxy + cy^2 = a_1 \left( a_2 x + \frac{b}{2a_1 a_2} y \right)^2$. \end{enumerate} \end{proof} \glsadjdefn{posdef_bqf}{positive definite}{\gls{bqform}}