%! TEX root = NT.tex % vim: tw=50 % 23/10/2023 10AM \begin{remark*} If $\gcdbrack (a, N) > 1$, then $\jacobi{a}{N} = 0$, as if $p \divides \gcdbrack (a, N)$ then $\jacobi{a}{p} = 0$. If $N$ is \gls{prime}, then $\jacobi{a}{N}$ is well-defined (because \gls{jac_symb} equals the \gls{leg_symb}). \end{remark*} \begin{example*} \[ \jacobi{1}{15} = \jacobi{1}{3} \jacobi{1}{5} = 1 \qquad \jacobi{2}{15} = \jacobi{2}{3} \jacobi{2}{5} = -1 \times -1 = 1 \] \end{example*} \begin{warning*} The \gls{jac_symb} does not tell you whether $a$ is a square \gls{modulo} $N$ (except when $N$ is \gls{prime}). For example, $2$ is not a square \gls{modulo} $15$ (since it isn't a square \gls{modulo} $3$), but as seen in the previous example, $\jacobi{2}{15} = 1$. If $N = pq$, where $p$ and $q$ are distinct odd \glspl{prime}, then $a \bmod pq$ is a square if and only if $a \bmod p$ is a square and $a \bmod q$ is a square, which happens if and only if $\legendre{a}{p} = \legendre{a}{q} = 1$. But we have $\jacobi{a}{N} = \legendre{a}{p} \legendre{a}{q} = 1$, which happens if and only if either $\legendre{a}{p} = \legendre{a}{q} = 1$ \emph{or} $\legendre{a}{p} = \legendre{a}{q} = -1$. \end{warning*} \vspace{-1em} In general, to decide is $a \bmod{N}$ is a square, we need to factorise $N$. \begin{flashcard}[jacobi-formulae-lemma] \begin{lemma}[Jacobi formulae] Let $M, N \in \NN$ be odd, $a, b \in \ZZ$. Then: \begin{enumerate}[(1)] \item \cloze{If $a \equiv b \pmod{N}$, then $\jacobi{a}{N} = \jacobi{b}{N}$.} \item \cloze{$\jacobi{ab}{N} = \jacobi{a}{N} \jacobi{b}{N}$.} \item \cloze{$\jacobi{a}{MN} = \jacobi{a}{M} \jacobi{a}{N}$.} \end{enumerate} \end{lemma} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item \cloze{If $N = p_1 \cdots p_r$, then \[ \jacobi{a}{N} = \prod_{i = 1}^r \legendre{a}{p_i} \] If $a \equiv b \pmod{N}$, then $a \equiv b \pmod{p} ~\forall p \divides N$. If $p \divides N$ is \gls{prime}, then $\legendre{a}{p}$ only depends on $a \bmod{p}$. So indeed \[ \jacobi{a}{N} = \jacobi{b}{N} \] if $a \equiv b \pmod{N}$.} \item \cloze{ \[ \jacobi{ab}{N} = \prod_{i = 1}^r \legendre{ab}{p_i} = \prod_{i = 1}^r \legendre{a}{p_i}\legendre{b}{p_i} = \jacobi{a}{N} \jacobi{b}{N} .\] } \item \cloze{If $N = p_1 \cdots p_r$, $M = q_1 \cdots q_s$, then $NM = p_1 \cdots p_r q_1 \cdots q_s$, so} \[ \cloze{\jacobi{a}{MN} = \left( \prod_{i = 1}^r \legendre{a}{p_i} \right) \left( \prod_{j = 1}^s \legendre{a}{q_j} \right) = \jacobi{a}{M} \jacobi{a}{N}} \qedhere \] \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[jacobi-1-2-formulae-prop] \begin{proposition} If $N \in \NN$ is odd, then \begin{align*} \jacobi{-1}{N} &= \cloze{(-1)^{\frac{N - 1}{2}} = \begin{cases} 1 & N \equiv \pmod{4} \\ -1 & N \equiv 3 \pmod{4} \end{cases}} \\ \jacobi{2}{N} &= \cloze{(-1)^{\frac{N^2 - 1}{8}} = \begin{cases} 1 & N \equiv \pm 1 \pmod{8} \\ -1 & N \equiv \pm 5 \pmod{8} \end{cases}} \end{align*} \end{proposition} \begin{proof} \cloze{ If $N = p_1 \cdots p_r$, then \[ \jacobi{-1}{N} = \prod_{i = 1}^r \legendre{-1}{p_i} = \prod_{i = 1}^r (-1)^{\frac{p_i - 1}{2}} \] We need to show that if $a, b \in \ZZ$ are odd, then $(-1)^{\frac{a - 1}{2}} (-1)^{\frac{b - 1}{2}} = (-1)^{\frac{ab - 1}{2}}$. We have: \begin{align*} 2 \divides a - 1, 2 \divides b - 1 &\implies (a - 1)(b - 1) \equiv 0 \pmod{4} \\ &\implies ab - a - b + 1 \equiv 0 \pmod{4} \\ &\equiv ab - 1 \equiv (a - 1) + (b - 1) \pmod{4} \\ &\implies \frac{ab - 1}{2} \equiv \frac{a - 1}{2} + \frac{b - 1}{2} \pmod{2} \\ &\implies (-1)^{\frac{ab - 1}{2}} = (-1)^{\frac{a - 1}{2}} \cdot (-1)^{\frac{b - 1}{2}} \end{align*} Similarly, we compute \[ \jacobi{2}{N} = \prod_{i = 1}^r \legendre{2}{p_i} = \prod_{i = 1}^r (-1)^{\frac{p_i^2 - 1}{8}} \] We need to check that if $a, b \in \ZZ$ are odd, then $(-1)^{\frac{a^2 - 1}{8}} \cdot (-1)^{\frac{b^2 - 1}{8}} = (-1)^{\frac{(ab)^2 - 1}{8}}$. We have \begin{align*} a^2 \equiv 1 \pmod{4}, b^2 \equiv 1 \pmod{4} &\implies (a^2 - 1)(b^2 - 1) \equiv 0 \pmod{16} \\ &\implies a^2 b^2 - 1 \equiv (a^2 - 1) + (b^2 - 1) \pmod{16} \\ &\implies \frac{(ab)^2 - 1}{8} \equiv \frac{a^2 - 1}{8} + \frac{b^2 - 1}{8} \pmod{2} \qedhere \end{align*} } \end{proof} \end{flashcard} \begin{flashcard}[qr-jacobi-thm] \begin{theorem}[Quadratic Reciprocity for Jacobi symbols] \label{law_qr_jac} \cloze{ Let $M, N \in \NN$ be odd. Then \[ \jacobi{M}{N} = \jacobi{N}{M} \cdot (-1)^{\left( \frac{M - 1}{2} \right) \left( \frac{N - 1}{2} \right)} \] If $\gcdbrack (M, N) = 1$, then \[ \jacobi{M}{N} \jacobi{N}{M} = (-1)^{\left( \frac{M - 1}{2} \right) \left( \frac{N - 1}{2} \right)} .\] } \end{theorem} \begin{proof} \cloze{Factorise $M = q_1 \cdots q_s$, $N = p_1 \cdots p_r$. Let $k = \#\{j \st q_j \equiv 3 \pmod{4}\}$, $l = \#\{i \st p_i \equiv 3 \pmod{4}\}$. We can assume $M$ and $N$ are \gls{coprime} (since if they have a common factor, the \glspl{jac_symb} will both be zero). Then \begin{align*} \jacobi{M}{N} &= \prod_{i = 1}^r \legendre{M}{p_i} \\ &= \prod_{i = 1}^r \prod_{j = 1}^s \legendre{q_j}{p_i} \\ &= (-1)^{kl} \prod_{i = 1}^r \prod_{j = 1}^s \legendre{p_i}{q_j} \\ &= (-1)^{kl} \jacobi{N}{M} \end{align*} We need to show $(-1)^{kl} = (-1)^{\left( \frac{M - 1}{2} \right) \left( \frac{N - 1}{2} \right)}$. We know $M \equiv 3 \pmod{4}$ if and only if $k$ is odd. Similarly, $N \equiv 3 \pmod{4}$ if and only if $l$ is odd. So: \begin{align*} \RHS \text{ is $-1$} &\iff M, N \equiv 3 \pmod{4} \\ &\iff \text{both $k$ and $l$ are odd} \\ &\iff \text{$kl$ is odd} \\ &\iff (-1)^{kl} = -1 \qedhere \end{align*} } \end{proof} \end{flashcard} \begin{example*} We can use the \gls{jac_symb} to compute \glspl{leg_symb} without factoring. For example: \[ \jacobi{33}{73} = \jacobi{73}{33} = \jacobi{7}{33} = \jacobi{33}{7} = \jacobi{5}{7} \jacobi{7}{5} = \jacobi{2}{5} = - 1 .\] Another example (using the above, noting that we first factor out the $2$ because \nameref{law_qr_jac} requires both numbers to be odd): \[ \jacobi{66}{73} = \jacobi{2}{73} \jacobi{33}{73} = -1 .\] \end{example*} \newpage \section{Binary Quadratic Forms} \begin{theorem}[Fermat-Euler] If $N \in \NN$, then we can write $N = x^2 + y^2$, $x, y \in \ZZ$ if and only if for every \gls{prime} number $p$ such that $p \divides N$ and $p \equiv 3 \pmod{4}$, then $p$ divides $N$ an even number of times. In particular, if $q$ is an odd \gls{prime}, then $Q = x^2 + y^2 \iff q \equiv \pmod{4}$. \end{theorem} \vspace{-1em} In \courseref{GRM}, this is proved using unique factorisation in $\ZZ[i]$. Here, we will develop a general theory that applies to $x^2 + y^2$ (an example of a \gls{bqf}) and also to $x^2 + 2y^2$, $x^2 + 3y^2$, \ldots.