%! TEX root = NT.tex % vim: tw=50 % 20/10/2023 10AM \begin{example*} If $a = 3$, then for $p > 3$, \[ \mu = \# \left\{ b \in \ZZ ~\bigg|~ 0 < b < \frac{p}{2}, \gmod{3b} < 0 \right\} \] If $0 < b < \frac{p}{6}$, $0 < 3b < \frac{p}{2}$, so $\gmod{3b} = 3b > 0$. If $\frac{p}{6} < b \frac{p}{3}$, $\frac{p}{2} 3b > p$, $-\frac{p}{2} < 3b - p < 0$, so $\gmod{3b} = 3b - p < 0$. If $\frac{p}{3} < b < \frac{p}{2}$, $p < 3b < \frac{3p}{2}$, $0 < 3b - p < \frac{p}{2}$, so $\gmod{3b} = 3b - p > 0$. So \[ \mu = \# \left\{ b \in \ZZ ~\bigg|~ \frac{p}{2} < b < \frac{p}{3} \right\} \] In this case, $(-1)^\mu = \legendre{3}{p}$ depends only on $p \bmod{12}$. In general, if $a \in \ZZ$, $p \nmid a$, $b \in \ZZ$, then there exists $c \in \ZZ$ such that $-\frac{p}{2} < ab - pc < \frac{p}{2}$. Then $\gmod{ab} = ab - pc$. So another way to express $\mu$ is \[ \mu = \# \left\{(b, c) \in \ZZ^2 ~\bigg|~ 0 < b < \frac{p}{2}, -\frac{p}{2} < ab - pc < 0 \right\} .\] \end{example*} \begin{flashcard}[law-of-qr-thm] \begin{theorem}[Law of Quadratic Reciprocity] \label{law_qr} \cloze{ Let $p$, $q$ be distinct odd \glspl{prime}. Then \[ \legendre{p}{q} \legendre{q}{p} = (-1)^{\left( \frac{p - 1}{2} \right) \left( \frac{q - 1}{2} \right)} .\] Equivalently, \[ \legendre{p}{q} = \begin{cases} -\legendre{q}{p} & \text{if $p \equiv q \equiv 3 \pmod{4}$} \\ \legendre{q}{p} & \text{otherwise} \end{cases} \] } \end{theorem} \begin{proof} \cloze{ We know $\legendre{q}{p} = (-1)^\mu$, \[ \mu = \# \left\{ (b, c) \in \ZZ^2 ~\bigg|~ 0 < b < \frac{p}{2}, -\frac{p}{2} < qb - pc < 0 \right\} .\] We know $\legendre{p}{q} = (-1)^\nu$, \begin{align*} \nu &= \# \left\{ (b, c) \in \ZZ^2 ~\bigg|~ 0 < b < \frac{q}{2}, -\frac{q}{2} < pb - qc < 0 \right\} \\ &= \# \left\{ (b, c) \in \ZZ^2 ~\bigg|~ 0 < c < \frac{q}{2}, 0 < qb - pc < \frac{q}{2} \right\} \end{align*} Define \begin{align*} A &= \left\{ (b, c) \in \ZZ^2 ~\bigg|~ 0 < b < \frac{p}{2}, -\frac{p}{2} < qb - pc < 0 \right\} \\ B &= \left\{ (b, c) \in \ZZ^2 ~\bigg|~ 0 < c < \frac{q}{2}, 0 < qb - pc < \frac{q}{2} \right\} \end{align*} (so $\munum = \# A$, $\nu = \# B$). \textbf{Claim:} $A$, $B$ are disjoint subsets of \[ S = \left\{ (b, c) \in \ZZ^2 ~\bigg|~ 0 < b < \frac{p}{2}, 0 < c < \frac{q}{2} \right\} .\] Why? $A \subset S$. We need to show $(b, c) \in A$ implies $0 < c < \frac{q}{2}$. We have $pc > qb > 0 \implies c > 0$, and \[ pc < qb + \frac{p}{2} < \frac{qp}{2} + \frac{p}{2} \implies c < \frac{q + 1}{2} \implies c < \frac{q}{2} \] (since $c \in \ZZ$, $q$ odd). Similarly, $B \subset S$. $A$, $B$ are disjoint because $qb - pc < 0$ in $A$, $qb - pc > 0$ in $B$. We have $\# S = \left( \frac{p - 1}{2} \right) \left( \frac{q - 1}{2} \right)$, so \begin{align*} \text{desired result} &\iff (-1)^{\#A + \#B} = (-1)^{\#S} \\ &\iff \#(A \sqcup B) \equiv \# S \pmod{2} \\ &\iff \# (S \setminus (A \cup B)) \text{ is even} \end{align*} Note \[ S \setminus (A \cup B) = \left\{ (b, c) \in S ~\bigg|~ qb - pc < -\frac{p}{2} \right\} \sqcup \left\{ (b, c) \in S ~\bigg|~ qb - pc > \frac{q}{2} \right\} \eqdef X \sqcup Y \] We'll show $\#X = \#Y$. Consider the map $\theta : S \to S$, $\theta(b, c) = \left( \frac{p + 1}{2} - b, \frac{q + 1}{2} - c \right)$. We have $\theta^2 = \id$, hence $\theta$ is surjective, hence bijective since $S$ is finite. To show $\#X = \#Y$, it's enough to show $\theta(X) = Y$. If $(b, c) \in S$, then $(b, c) \in X \iff qb - pc < -\frac{p}{2}$. \begin{align*} \theta(b, c) \in Y &\iff q \left( \frac{p + 1}{2} - b \right) - p \left( \frac{q + 1}{2} - c \right) > \frac{q}{2} \\ &\iff \frac{q}{2} - qb - \frac{p}{2} + pc > \frac{q}{2} \\ &\iff pc - qb > \frac{p}{2} \\ &\iff (b, c) \in X \qedhere \end{align*} } \end{proof} \end{flashcard} Picture of proof: \begin{center} \includegraphics[width=0.6\linewidth] {images/e3091c106f2d11ee.png} \end{center} \[ A = \left\{ (b, c) \in S ~\bigg|~ -\frac{p}{2} < qb - pc < 0 \right\} \] \[ -\frac{p}{2} = qb - pc \iff c = \frac{q}{p}b + \half \] \begin{example*} Let $p \ge 5$. We determine $\legendre{3}{p}$ using \nameref{law_qr}. We have \[ \legendre{3}{p} = \begin{cases} -\legendre{p}{3} & p \equiv 3 \pmod{4} \\ \legendre{p}{3} & p \equiv \pmod{4} \end{cases} \] $\legendre{p}{3}$ only depends on $p$ \gls{modulo} $3$. In particular \[ \legendre{p}{3} = \begin{cases} 1 & p \equiv 1 \pmod{3} \\ -1 & p \equiv -1 \pmod{3} \end{cases} \] We find \[ \legendre{3}{p} = \begin{cases} +1 & p \equiv \pm 1 \pmod{12} \\ -1 & p \equiv \pm 5 \pmod{12} \end{cases} \] \end{example*} \begin{example*} Question: Does the equation $X^2 = 19$ have a \gls{eq_sol} in $\ZZ / 73\ZZ$? $73$ is \gls{prime}, so this happens if and only if $\legendre{19}{73} = 1$. $19$ is also \gls{prime}, so this equals \[ \legendre{73}{19} = \legendre{16}{19} = +1 \] as $16$ is a square number (and using $73 = 3 \times 19 + 6$). \end{example*} \begin{example*} \begin{align*} \legendre{34}{97} &= \legendre{2 \times 2}{97} \\ &= \legendre{2}{97} \legendre{2}{97} \\ &= \legendre{17}{97} \\ &= \legendre{97}{17} \\ &= \legendre{12}{17} \\ &= \legendre{3}{17} \legendre{4}{17} \\ &= \legendre{3}{17} \\ &= -1 \end{align*} \end{example*} \begin{example*} \[ \legendre{7411}{9283} = - \legendre{9283}{7411} = -\legendre{1872}{7411} = -\legendre{13}{7411} = -\legendre{7411}{13} = -\legendre{1}{13} = -1 \] \end{example*} To compute \glspl{leg_symb} without \glsref[prime_factorisation]{factorising}, we can use the \gls{jac_symb}. \begin{flashcard}[jacobi-symb-defn] \begin{definition}[Jacobi Symbol] \glsnoundefn{jac_symb}{Jacobi symbol}{Jacobi symbols} \glssymboldefn{jac_symb}{Jacobi symbol}{(j)} \cloze{ Let $N \in \NN$ be odd with \gls{prime_factorisation} $N = p_1 \cdots p_k$, noting that the $p_i$'s need not be distinct. Then for $a \in \ZZ$, we define the \emph{Jacobi symbol} as \[ \jacobi{a}{N} = \prod_{i = 1}^k \legendre{a}{p_i} \] where the right hand side is a product of \glspl{leg_symb}. } \end{definition} \end{flashcard}