%! TEX root = NT.tex % vim: tw=50 % 18/10/2023 10AM \newpage \section{Quadratic Reciprocity} \begin{flashcard}[quadratic-residue-defn] \begin{definition}[Quadratic residue] \glsnoundefn{qr}{quadratic residue}{quadratic residues} \glsnoundefn[qr]{nqr}{quadratic non-residue}{quadratic non-residues} \glsnoundefn[qr]{nr}{non-residue}{non-residues} \cloze{ Let $p$ be a \gls{prime}, $a \in \ZZ$. We say $a \bmod p$ is a \emph{quadratic residue} if the equation $X^2 = a$ has a \gls{eq_sol} in $\ZZ / p\ZZ$. If there's no \gls{eq_sol}, we say $a$ is a \emph{quadratic non-residue}. } \end{definition} \end{flashcard} \begin{example*} $p = 7$: \begin{center} \begin{tabular}{c|ccccccc} $x$ & $0$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ \\ \hline $x^2 \bmod 7$ & $0$ & $1$ & $4$ & $2$ & $2$ & $4$ & $1$ \end{tabular} \end{center} So the \glspl{qr} \gls{modulo} $7$ are $1$, $2$ and $4$. The \glspl{nr} are $3$, $5$ and $6$. \end{example*} \begin{flashcard}[number-of-qrs-mod-p-lemma] \begin{lemma} If $p$ is an odd \gls{prime}, then there are \cloze{$\frac{p - 1}{2}$} \gls{qr} \gls{modulo} $p$, and \cloze{$\frac{p - 1}{2}$} \glspl{nr}. \end{lemma} \begin{proof} \cloze{ Consider $\theta : \multbrack(\ZZ / p\ZZ) \to \multbrack(\ZZ / p\ZZ)$, $\theta(x) = x^2$. Want to show that the image of $\theta$ contains exactly $\frac{p - 1}{2}$ elements. Enough to show that each fibre of $\theta$ contains exactly $2$ elements. If $x \in \multbrack(\ZZ / p\ZZ)$, then $\theta(x) = \theta(-x)$. If $x, y \in \multbrack(\ZZ / p\ZZ)$, $\theta(x) = x^2 = y^2 = \theta(y)$, then $(x + y)(x - y) \equiv 0 \pmod{p}$, so $x \equiv y \pmod{p}$ or $x \equiv -y \pmod{p}$, as $p$ is \gls{prime}, so every fibre contains exactly $2$ elements as desired. } \end{proof} \end{flashcard} \begin{flashcard}[legendre-symbol-notation] \begin{notation*}[Legendre symbol] \glsnoundefn{leg_symb}{Legendre symbol}{Legendre symbols} \glssymboldefn{leg_symb}{Legendre symbol}{(ap)} \cloze{ If $p$ is an odd \gls{prime}, $a \in \ZZ$, then the \emph{Legendre symbol} is \[ \legendre{a}{p} = \begin{cases} 0 & p \divides a \\ 1 & p \ndivides a, \text{$a \bmod p$ is a \gls{qr}} \\ -1 & p \ndivides a, \text{$a \bmod p$ is a \gls{nqr}} \end{cases} \] } \end{notation*} \end{flashcard} \begin{flashcard}[eulers-criterion-prop] \begin{proposition}[Euler's Criterion] \label{eulers_criterion} \cloze{ If $p$ is an odd \gls{prime}, $a \in \ZZ$, then $a^{\frac{p - 1}{2}} \equiv \legendre{a}{p} \pmod{p}$. } \end{proposition} \begin{proof} \cloze{ If $p \divides a$, this holds by definition, so let's assume $p \ndivides a$. Then \nameref{euler_fermat_thm} says \[ (a^{\frac{p - 1}{2}})^2 = a^{p - 1} \equiv 1 \pmod{p} \implies a^{\frac{p - 1}{2}} \equiv \pm 1 \pmod{p} \] If $a$ is a \gls{qr}, then $a \equiv x^2$ for some $x \in \ZZ$, hence $a^{\frac{p - 1}{2}} \equiv x^{p - 1} \equiv 1 \pmod{p}$. So $a^{\frac{p - 1}{2}} \equiv \legendre{a}{p} \pmod{p}$ in this case. By \nameref{lagranges_thm}, the equation $X^{\frac{p - 1}{2}} = 1$ has at most $\frac{p - 1}{2}$ \glspl{eq_sol} in $\ZZ / p\ZZ$. We've shown that the \glspl{qr} give $\frac{p - 1}{2}$ \glspl{eq_sol}. If $a$ is a \gls{nqr}, then we must have $a^{\frac{p - 1}{2}} \equiv -1 \pmod{p}$, i.e. $a^{\frac{p - 1}{2}} \equiv \legendre{a}{p} \pmod{p}$. } \end{proof} \end{flashcard} \begin{flashcard}[legendre-multiplicative-coro] \begin{corollary} If $a, b \in \ZZ$, then \[ \legendre{ab}{p} = \legendre{a}{p} \legendre{b}{p} .\] \end{corollary} \begin{proof} \cloze{ For $p$ odd, $0$, $1$ and $-1$ lie in distinct congruence classes \gls{modulo} $p$. So it's enough to show that $\LHS \equiv \RHS \pmod{p}$. But \[ \LHS \equiv (ab)^{\frac{p - 1}{2}} \pmod{p}, \qquad \RHS \equiv a^{\frac{p - 1}{2}} b^{\frac{p - 1}{2}} \pmod{p} \qedhere \] } \end{proof} \end{flashcard} \begin{remark*} If we use $\mathrm{QR}$ to represent \glspl{qr} and $\mathrm{NQR}$ to represent \glspl{nqr}, we have \[ \mathrm{QR} \times \mathrm{QR} = \mathrm{QR}, \qquad \mathrm{NQR} \times \mathrm{NQR} = \mathrm{QR}, \qquad \mathrm{NQR} \times \mathrm{QR} = \mathrm{NQR} .\] \end{remark*} \begin{flashcard}[minus-one-legendre-symbol] \begin{corollary} \[ \legendre{-1}{p} = \cloze{(-1)^{\frac{p - 1}{2}} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}} \] \end{corollary} \end{flashcard} \begin{flashcard}[modulo-angle-brackets-notation] \begin{notation*} \glssymboldefn{gmod_brackets}{Gauss angle brackets}{a} If $p$ is an odd \gls{prime}, $a \in \ZZ$, then $\langle a \rangle$ denotes \cloze{the unique integer such that $a \equiv \langle a \rangle \pmod{p}$ and $-\frac{p}{2} < \langle a \rangle \frac{p}{2}$. (So $\langle a \rangle \in \left\{ -\frac{p - 1}{2}, -\frac{p - 3}{2}, \ldots, \frac{p - 1}{2} \right\}$).} \end{notation*} \end{flashcard} \begin{flashcard}[Gauss-s-lemma] \begin{lemma}[Gauss's Lemma] \label{gausss_lemma} \cloze{ Let $p$ be an odd \gls{prime}, $a \in \ZZ$, $p \nmid a$. Then $\legendre{a}{p} = (-1)^\mu$, where \[ \mu = \#\{i \in \ZZ \mid 0 < i < \frac{p}{2} \text{ and $\gmod{ai} < 0$}\} .\] } \end{lemma} \fcscrap{\vspace{-1em} \textbf{Inspiration for proof:} One way of proving \nameref{fermats_little_thm} is to consider the action of $\times a$ on $1, \ldots, p - 1 \bmod p$. Multiplication by $a$ will permute these, so \begin{align*} \prod_{i = 1}^{p - 1} \equiv \prod_{i = 1}^{p - 1} ai \pmod{p} &\implies (p - 1)! \equiv a^{p - 1} (p - 1)! \pmod{p} \\ &\implies a^{p - 1} \equiv 1 \pmod{p} \end{align*} } \begin{proof} \cloze{ We consider \[ \prod_{i = 1}^{\frac{p - 1}{2}} ai = a^{\frac{p - 1}{2}} \prod_{i = 1}^{\frac{p - 1}{2}} i = a^{\frac{p - 1}{2}} \left( \frac{p - 1}{2} \right)! \] We also have \[ \prod_{i = 1}^{\frac{p - 1}{2}} ai \equiv \prod_{i = 1}^{\frac{p - 1}{2}} \gmod{ai} \pmod{p} .\] For each $i = 1, \ldots, \frac{p - 1}{2}$, there's a unique sign $\eps_i \in \{\pm 1\}$ such that $\eps_i \gmod{ai} > 0$. \textbf{Claim:} The set $\left\{\eps \gmod{ai} \mid i = 1, \ldots, \frac{p - 1}{2}\right\} = \left\{ 1, 2, \ldots, \frac{p - 1}{2} \right\}$. Proof of claim: $\LHS \subset \RHS$ as $0 < \eps_i \gmod{ai} < \frac{p}{2}$. We need to show that if $i \neq j$, then $\eps_i \gmod{ai} \neq \eps_j \gmod{aj}$. If $\eps_i \gmod{ai} = \eps_j \gmod{aj}$, then \[ ai \equiv \eps_i \eps_j a_j \pmod{p} \implies i \equiv \pm j \pmod{p} .\] By assumption, $i, j \in \left\{ 1, \ldots, \frac{p - 1}{2} \right\}$. If $i \equiv \pm j \pmod{p}$ then we must have $i \equiv j \pmod{p}$, so $i = j$. Putting this together, we find \begin{align*} \prod_{i = 1}^{\frac{p - 1}{2}} \eps_i \gmod{ai} &\equiv \prod_{i = 1}^{\frac{p - 1}{2}} (\eps_i) \cdot \prod_{i = 1}^{\frac{p - 1}{2}} ai \\ &= \prod_{i = 1}^{\frac{p - 1}{2}} (\eps_i) \cdot a^{\frac{p - 1}{2}} \cdot \left( \frac{p - 1}{2} \right)! \end{align*} and \begin{align*} \prod_{i = 1}^{\frac{p - 1}{2}} \eps_i \gmod{ai} \equiv \prod_{i = 1}^{\frac{p - 1}{2}} i \equiv \left( \frac{p - 1}{2} \right)! \pmod{p} &\implies \left( \prod_{i = 1}^{\frac{p - 1}{2}} \eps_i \right) \cdot a^{\frac{p - 1}{2}} \equiv 1 \pmod{p} \\ &\implies \prod_{i = 1}^{\frac{p - 1}{2}} \eps_i \equiv \legendre{a}{p} \pmod{p} \\ &\implies (-1)^\mu = \legendre{a}{p} \qedhere \end{align*} } \end{proof} \end{flashcard} \begin{example*} We can compute $\legendre{-1}{p}$ using \nameref{gausss_lemma}: $\legendre{-1}{p} = (-1)^\mu$ where \[ \mu = \# \left\{ 1 \le i \le \frac{p - 1}{2} ~\bigg|~ \gmod{-i} < 0\right\} = \# \left\{ 1 \le i \le \frac{p - 1}{2} ~\bigg|~ -i < 0\right\} = \frac{p - 1}{2} \] \end{example*} \begin{example*} Next compute $\legendre{2}{p} = (-1)^\mu$, where \[ \mu = \# \left\{ 0 < i < \frac{p}{2} ~\bigg|~ \gmod{2i} < 0\right\} .\] If $i \in \ZZ$ and $0 < i < \frac{p}{4}$, then $0 < 2i < \frac{p}{2}$, so $\gmod{2i} = 2i > 0$. If $i \in \ZZ$ and $\frac{p}{4} < i < \frac{p}{2}$, then $\frac{p}{2} < 2i < p$, so $-\frac{p}{2} < 2i - p < 0$, so $\gmod{2i} = 2i - p < 0$. So \[ \mu = \# \left\{ i \in \ZZ ~\bigg|~ \frac{p}{4} < i < \frac{p}{2} \right\} = \left\lfloor \frac{p}{2} \right\rfloor - \left\lfloor \frac{p}{4} \right\rfloor \] where if $x \in \RR$, $\left\lfloor x \right\rfloor = \sup\{n \in \ZZ \mid n \le x\}$. Then $(-1)^\mu = \legendre{2}{p}$ depends on $p \bmod 8$. \begin{center} \renewcommand{\arraystretch}{1.3} \begin{tabular}{c|c|c|c|c|c|c} $p$ & $\frac{p}{2}$ & $\left\lfloor \frac{p}{2} \right\rfloor$ & $\frac{p}{4}$ & $\left\lfloor \frac{p}{4} \right\rfloor$ & $\mu$ & $(-1)^\mu$ \\ \hline $8k + 1$ & $4k + \half$ & $4k$ & $2k + \frac{1}{4}$ & $2k$ & $2k$ & $1$ \\ $8k + 3$ & $4k + \frac{3}{2}$ & $4k + 1$ & $2k + \frac{3}{4}$ & $2k$ & $2k + 1$ & $-1$ \\ $8k + 5$ & $4k + \frac{5}{2}$ & $4k + 2$ & $2k + \frac{5}{4}$ & $2k + 1$ & $2k + 1$ & $-1$ \\ $8k + 7$ & $4k + \frac{7}{2}$ & $4k + 3$ & $2k + \frac{7}{4}$ & $2k + 1$ & $2k + 2$ & $1$ \end{tabular} \end{center} \[ \implies \legendre{2}{p} = \begin{cases} 1 & p \equiv 1, 7 \pmod{8} \\ -1 & p \equiv 3, 5 \pmod{8} \end{cases} \] \end{example*}