%! TEX root = NT.tex % vim: tw=50 % 16/10/2023 10AM \begin{example*} Is $2$ a \gls{prim_root} \gls{modulo} $p = 19$? $\totient(p) = 18$, so if $d$ is the order of $2$ \gls{modulo} $19$, then $d \divides 18$ and \[ d = 18 \iff \text{$2$ is a \gls{prim_root} \gls{modulo} $19$} \] The divisors of $18$ are $1$, $3$, $9$, $2$, $6$ and $18$. So $2$ is a \gls{prim_root} if and only if $2^6 \not\equiv 1 \pmod{19}$ and $2^9 \not\equiv 1 \pmod{19}$. \begin{align*} 2^4 = 16 &\equiv -3 \pmod{19} \\ 2^6 \equiv -12 \not\equiv 1 \pmod{19} \\ 2^9 = 8 \times 2^6 \equiv 56 \equiv -1 \not\equiv 1 \pmod{19} \end{align*} So $2$ is a \gls{prim_root} \gls{modulo} $p$. \end{example*} \begin{remark*} If $p$ is a \gls{prime} number, $a \in \ZZ$, then $a$ is a \gls{prim_root} \gls{modulo} $p$ if and only if \[ a^{\frac{p - 1}{q}} \not\equiv 1 \pmod{p} \qquad \forall \text{\gls{prime} divisors $q$ of $p - 1$} \] Checking this requires knowing the \gls{prime_factorisation} of $p - 1$. There is no known \gls{poly_time} algorithm for finding a \gls{prim_root} \gls{modulo} $a$ given \gls{prime} $p$. One can show that, assuming GRH (generalised Riemann hypothesis), there exists $c > 0$ such that for any \gls{prime} number $p$, there exists $a \in \ZZ$, $1 \le a \le c(\log p)^6$ such that $a$ is a \gls{prim_root} \gls{modulo} $p$. \end{remark*} \begin{flashcard}[p-to-the-k-is-cyclic] \begin{theorem} \label{Zpk_cyclic} \cloze{Let $p$ be an odd \gls{prime}, $k \in \NN$.} Then $\multbrack(\ZZ / p^k\ZZ)$ is cyclic. \end{theorem} \end{flashcard} \begin{remark*} The corresponding statement is false for $p = 2$, on $\multbrack(\ZZ / 8\ZZ) \simeq C_2 \times C_2$ which is not cyclic. \end{remark*} \begin{lemma} \label{lemma_124} Let $p$ be an odd \gls{prime}, $k \in \NN$, $x, y \in \ZZ$. Then: \begin{enumerate}[(1)] \item If $x \equiv 1 + p^k y \pmod{p^{k + 1}}$, then $x^p \equiv 1 + p^{k + 1} y \pmod{p^{k + 2}}$. \item $(1 + py)^{p^k} \equiv 1 + p^{k + 1} y \pmod{p^{k + 2}}$. \end{enumerate} \end{lemma} \begin{proof} \begin{enumerate}[(1)] \item Note that $x = 1 + p^k y + p^{k + 1} z$ for some $z \in \ZZ$. Then \[ x^p = (1 + p^k y)^p + \sum_{j = 1}^p {p \choose j} (1 + p^k y)^{p - j} (p^{k + 1} z)^j \] If $1 \le j \le p - 1$, then $p \divides {p \choose j}$, so $p \cdot p^{k + 1} \divides {p \choose j} (p^{k + 1} z)^j$. For $j = p$, $(p^{k + 1} z)^p = p^{pk + p} z^p$. Since $pk + p \ge k + 2$, $p^{k + 2} \divides (p^{k + 1} z)^p$. So each term of the sum is $0 \pmod{p^{k + 2}}$, so $x^p \equiv (1 + p^k y)^p \pmod{p^{k + 2}}$. Now we compute: \[ (1 + p^k y)^p = 1 + p^{k + 1} y + \sum_{j = 2}^p {p \choose j} (p^k y)^j \] If $2 \le j \le p - 1$, then $p \divides {p \choose j}$, so $p^{2k + 1} \divides {p \choose j} (p^k y)^j$. We have $2k + 1 \ge k + 2 \iff k \ge 1$, so $p^{k + 2} \divides {p \choose j} (p^k y)^j$. $(p^k y)^p = p^{pk} y^p$. We have $pk \ge k + 2 \iff (p - 1)k \ge 2$. We're assuming $p$ is odd, so $p - 1 \ge 2$, so $(p - 1)k \ge 2$. So all the terms in the sum are divisible by $p^{k + 2}$, so $x^p \equiv 1 + p^{k + 1} y \pmod{p^{k + 2}}$ as desired. \item Apply part (1) $k$ times to $1 + py, (1 + py)^p, \ldots$. \qedhere \end{enumerate} \end{proof} \begin{lemma} \label{lemma_125} Let $p$ be an odd \gls{prime}, $k \ge 2$, $a \in \ZZ$. If $a$ is a \gls{prim_root} \gls{modulo} $p$ but $a^{p - 1} \not\equiv 1 \pmod{p^2}$, then $a$ generates $\multbrack(\ZZ / p^k \ZZ)$. \end{lemma} \begin{proof} Let $d$ be the order of $a \in \multbrack(\ZZ / p^k\ZZ)$. Then $d \divides \totient(p^k) = p^{k - 1}(p - 1)$. We know $a^d \equiv 1 \pmod{p^k} \implies a^d \equiv 1 \pmod{p}$, so $p - 1 \divides d$ (since $a$ is a \gls{prim_root} \gls{modulo} $p$). We must have $d = p^j (p - 1)$ for some $0 \le j \le k - 1$. Need to show $j = k - 1$. We can write $a^{p - 1} = 1 + py$ with $y \in \ZZ$, $\gcdbrack(p, y) = 1$ (as $a^{p - 1} \not\equiv 1 \pmod{p^2}$). So \begin{align*} a^{(p - 1)p^{k - 2}} = (1 + py)^{p^{k - 2}} &\equiv 1 + p^{k - 1} y \pmod{p^k} &&\text{by \cref{lemma_124}(2)} \\ &\not\equiv 1 \pmod{p^k} \end{align*} So $d \ndivides (p - 1) p^{k - 2}$. This forces $d = (p - 1)p^{k - 1}$, so $a$ generates $\multbrack(\ZZ / p^k \ZZ)$. \end{proof} We can now prove \cref{Zpk_cyclic} (i.e. $\multbrack(\ZZ / p^k\ZZ)$ is cyclic when $p$ is odd): \begin{proof} We can assume $k \ge 2$. Let $a \in \ZZ$ be a \gls{prim_root} \gls{modulo} $p$. If $a^{p - 1} \not\equiv 1 \pmod{p^2}$, then $a \pmod{p^k}$ generates $\multbrack(\ZZ / p^k\ZZ)$, and we're done. So suppose $a^{p - 1} \equiv 1 \pmod{p^2}$, and let $b = (1 + p)a$. \textbf{Claim:} $b \pmod{p^k}$ generates $\multbrack(\ZZ / p^k\ZZ)$. Since $b \equiv a \pmod{p}$, $b$ is a \gls{prim_root} \gls{modulo} $p$. By \cref{lemma_125}, the claim is true if $b^{p - 1} \not\equiv 1 \pmod{p^2}$, or equivalently if $b^p \not\equiv b \pmod{p^2}$. We compute \[ b^p = (1 + p)^p a^p \equiv a^p \pmod{p^2} \] We're assuming that $a^p \equiv a \pmod{p^2}$, so $b^p \equiv a \pmod{p}^2$. By construction we have $b \not\equiv a \pmod{p}^2$, so $b^p \not\equiv b \pmod{p^2}$, so the claim is true. \end{proof} \begin{example*} In last lecture, we saw that $2$ is not a \gls{prim_root} \gls{modulo} $7$, but $3$ is. Does $3 \pmod{7^k}$ generate $\multbrack(\ZZ / 7^k \ZZ)$ for all $k > 1$? This is true if and only if $3^6 \not\equiv 1 \pmod{49}$. \[ 3^4 = 81 = 100 - 19 = 98 + 2 - 19 \equiv -17 \pmod{49} \] $17 \times 3 = 51 \equiv 2 \pmod{49}$, so $3^5 \equiv -2 \pmod{49}$ so $3^6 \equiv -6 \not\equiv 1 \pmod{49}$. So $3 \pmod{7^k}$ does generate the group for all $k \ge 1$. \end{example*} \begin{remark*} What happens when $p = 2$? \cref{lemma_124}(1) fails when $p = 2$, $k = 1$ ($(1 + 2)^2 \equiv 1 \pmod{8}$). It does hold when $k \ge 2$. Using this, you can show that \[ \ker(\multbrack(\ZZ / 2^k \ZZ) \to \multbrack(\ZZ / 4\ZZ)) \] is cyclic when $k \ge 2$, of order $2^{k - 2}$. Using this one can show that there's an isomorphism $\multbrack(\ZZ / 2^k\ZZ) \simeq C_{2^{k - 2}} \times C_2$, with generators $5$, $-1$ modulo $2^k$. \end{remark*}