%! TEX root = NT.tex % vim: tw=50 % 13/10/2023 10AM \begin{flashcard}[totient-function-formulae-prop] \begin{proposition}[totient function formulae] \label{totient_function_formulae} \phantom{} \begin{enumerate}[(1)] \item \cloze{If $p$ is a \gls{prime} number, $k \in \NN$, $\totient(p^k) = p^k = k^{k - 1}$.} \item \cloze{If $N \in \NN$, then \[ \totient(N) = N \prod_{\text{$p \divides N$ \gls{prime}}} \left( 1 - \frac{1}{p} \right) \]} \item \cloze{If $N \in \NN$, $\sum_{d \divides N} \totient(d) = N$.} \end{enumerate} \end{proposition} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item \cloze{\phantom{}\vspace{-2em} \begin{align*} \totient(p^k) &= \#\{1 \le a \le p^k \mid (a, p) = 1\} \\ &= \#\{1 \le a \le p^k\} - \#\big\{1 \le a \le p^k ~\big|~ p \mid a\big\} \\ &= p^k - p^{k - 1} \end{align*}} \item \cloze{Assume $N > 1$, and factorise $N = \prod_{i = 1}^r p_i a^i$, $a_i \ge 1$, $p_i$ distinct primes. Since $\totient$ is \gls{mult_fn}, \[ \totient(N) = \prod_{i = 1}^r \totient(p_i^{a_i}) = \prod_{i = 1}^r p_i^{a_i} \left( 1 - \frac{2}{p_i} \right) = N \prod_{i = 1}^r \left( 1 - \frac{1}{p_i} \right) \]} \item \cloze{We know $f(N) = \sum_{d \divides N} \totient(d)$ is \gls{mult_fn}. Want to show $f(N) = N$. It's enough to check this equality when $N = p^k$ is a \gls{prime} power ($k \ge 1$). \[ f(p^k) = \sum_{i = 0}^k \totient(p^i) = (p^k - p^{k - 1}) + (p^{k - 1} - p^{k - 2}) + \cdots + (p - 1) + 1 = p^k \qedhere \]} \end{enumerate} \end{proof} \end{flashcard} \subsubsection*{Polynomial Congruences} If $N \in \NN$, a polynomial $f(X)$ with coefficients in $\ZZ / N\ZZ$ is a formal linear combination \[ f(X) = a_n X^n + a_{n - 1} X^{n - 1} + \cdots + a_1 X + a_0 \] of powers of $X$, $a_i \in \ZZ / N\ZZ$. Two polynomials are equal if their coefficients are equal (so for example $X = X + 0 \cdot X^2$). We write $\ZZ / N\ZZ[X]$ for the set of polynomials with coefficients in $\ZZ / N\ZZ$. You can add and multiply these in the usual way, which gives this a ring structure. If $a \in \ZZ / N\ZZ$, \[ f(a) \eqdef a_n a^n + \cdots + a_1 a + a_0 \in \ZZ / N\ZZ .\] \glsnoundefn{eq_sol}{solution}{solutions} The \emph{solutions} to $f(X) = 0$ in $\ZZ / N\ZZ$ are the $a \in \ZZ / N\ZZ$ such that $f(a) \equiv \pmod{N}$. For example $X^2 + 2 = 0$ in $\ZZ / 5\ZZ$ has no \glspl{eq_sol}, while $X^3 + 1 = 0$ has 3 \glspl{eq_sol} in $\ZZ / 7\ZZ$: 3, 5 and 6 \gls{modulo} 7. The equation $X^2 - 1 = 0$ has 4 \glspl{eq_sol} in $\ZZ / 8\ZZ$: 1, 3, 5 and 7 \gls{modulo} 8. Note that in this last case, the congruence has more than the ``expected'' number of solutions (i.e. degree of $f(X) = 2$ in this case). This can happen only when the \glsref[modulo]{modulus} is not \gls{prime}. \begin{flashcard}[lagranges-thm] \begin{theorem}[Lagrange's Theorem] \label{lagranges_thm} \cloze{Let $p$ be a \gls{prime} number, \[ f(X) = a_n X^n + \cdots + a_1 X + a_0 \in \ZZ / p\ZZ[X] \] with $a_n \not\equiv 0 \pmod{p}$. Then the equation $f(X) = 0$ has at most $n$ \glspl{eq_sol} in $\ZZ / p\ZZ$.} \end{theorem} \begin{proof} \cloze{ Induction on $n \ge 0$. If $n = 0$, $f(X) = a_0 \not\equiv \pmod{p}$. Want to solve $a_0 \equiv \pmod{p}$. This has 0 \glspl{eq_sol} as desired. Suppose $n > 0$. Assume that $f(X) = 0$ has at least 1 \gls{eq_sol}, say $a \in \ZZ / p\ZZ$ (and if there are no \glspl{eq_sol}, then we are already done). Note if $j > 0$, then \[ X^j - a^j = (X - a)(X^{j - 1} + a X^{j - 2} + \cdots + a^{j - 1}) \] so \[ f(X) = f(X) - f(A) = \sum_{j = 1}^n a_j (X^j - a^j) = (X - a) \ub{\sum_{j = 1}^n a_j (X^{j - 1} + a X^{j - 2} + \cdots + a^{j - 1})}_{\eqdef g(X)} \] Note that $g(X)$ has leading term $a_n X^{n - 1}$. Suppose $b \in \ZZ / p\ZZ$ is a \gls{eq_sol} to $f(X) = 0$ distinct from $a$. Then $0 \equiv f(b) \equiv (b - a) g(b) \pmod{p}$. Since $p$ is \gls{prime} and $a \not\equiv b \pmod{p}$, $b - a$ has a multiplicative inverse \gls{modulo} $p$. So $g(b) \equiv 0 \pmod{p}$. By induction, we know $g(X) = 0$ has at most $n - 1$ \glspl{eq_sol} in $\ZZ / p\ZZ$. Hence $f(X) = 0$ has at most $n$ \glspl{eq_sol}. } \end{proof} \end{flashcard} \begin{flashcard}[Zpx-is-cyclic-thm] \begin{theorem} \cloze{Let $p$ be a \gls{prime} number. Then $\multbrack(\ZZ / p\ZZ)$ is a cyclic group of order $p - 1$.} \end{theorem} \begin{proof} \cloze{We know $\#\multbrack(\ZZ / p\ZZ) = \totient(p) = p - 1$. From \cref{totient_function_formulae}, we know \[ p - 1 = \sum_{d \divides p - 1} \totient(d) .\] We know that if $a \in \multbrack(\ZZ / p\ZZ)$ then order of $a$ divides $p - 1$ (Lagrange's theorem from group theory). If $N_d$ denotes the number of elements in $\multbrack(\ZZ / p\ZZ)$ of order $d$, then \[ \sum_{d \divides p - 1} N_d = p - 1 \] We want to show $N_{p - 1} > 0$. Suppose for contradiction that $N_{p - 1} = 0$. Note \[ \sum_{d \divides p - 1} N_d = p - 1 = \sum_{d \divides p - 1} \totient(d) .\] We know $\totient(p - 1) > 0$. If $N_{p - 1} = 0$, then we must have $N_d > \totient(d)$ for some $d \divides p - 1$. Let $a \in \multbrack(\ZZ / p\ZZ))$ be some element of this order $d$. Consider the cyclic subgroup $\langle a \rangle = \{1, a, \ldots, a^{d - 1}\} = \multbrack(\ZZ / p\ZZ)$. It's cyclic of order $d$, so has $\totient(d)$ elements of order $d$ (\cref{generators_of_C_n_coro}). We know $N_d > \totient(d)$, so there must exist $b \in \multbrack(\ZZ / p\ZZ)$ of order $d$, not contained in this subgroup. Claim: $\{1, a, \ldots, a^{d - 1}, b\}$ are $d + 1$ solutions to $X^d - 1 = 0$ in $\ZZ / p\ZZ$. This is clearly true for $b$, and for the powers of $a$, note $(a^{i})^d \equiv a^{id} \equiv (a^d)^i \equiv 1^i \equiv 1 \pmod{p}$. But this contradicts \cref{lagranges_thm} (\nameref{lagranges_thm}). } \end{proof} \end{flashcard} \begin{flashcard}[primitive-root-defn] \begin{definition}[primitive root] \glsnoundefn{prim_root}{primitive root}{primitive roots} \cloze{ Let $p$ be a \gls{prime} number, $a \in \ZZ$. We say that $a$ is a \emph{primitive root modulo $p$} if $a + N\ZZ \in \multbrack(\ZZ / p\ZZ)$ generates the group. } \end{definition} \end{flashcard} \vspace{-1em} The theorem says that primitive roots always exist. \begin{example*} For $p = 7$, one can check that $2$ is not a \gls{prim_root}, while $3$ is. \end{example*}