%! TEX root = NT.tex % vim: tw=50 % 11/10/2023 10AM \begin{flashcard}[euler-fermat-thm] \begin{proposition}[Euler-Fermat Theorem] \label{euler_fermat_thm} \cloze{ If $a, N \in \ZZ$, $N > 1$, $\gcdbrack(a, N) = 1$, then \[ a^{\totient(N)} \equiv 1 \pmod{N} \] } \end{proposition} \begin{proof} \cloze{ Lagrange's theorem says: if $G$ is a finite group, $g \in G$, then $\ub{g \cdot g \cdot \cdot \cdot g}_{\text{$\#G$ times}} = e$. We take $G = (\ZZ / N\ZZ)^\times$, $g = a + N\ZZ$, so $a^{\totient(N)} \equiv 1 \pmod{N}$. } \end{proof} \end{flashcard} \begin{flashcard}[fermats-little-thm] \begin{corollary}[Fermat's Little Theorem] \label{fermats_little_thm} \cloze{ If $p$ is a \gls{prime} number, $a \in \ZZ$, then $a^p \equiv a \pmod{p}$. } \end{corollary} \begin{proof} \cloze{ If $p \divides a$, then $a^p \equiv 0 \equiv a \pmod{p}$, so done. If $p \ndivides a$, then $\gcdbrack(a, p) = 1$, so by \nameref{euler_fermat_thm} $a^{p - 1} \equiv 1 \pmod{p}$, so $a^p \equiv a \pmod{p}$. } \end{proof} \end{flashcard} \begin{example*} Can we find $x \in \ZZ$ such that $x \equiv 7 \pmod{10}$ and $x \equiv 3 \pmod{13}$? In other words, is the intersection $(7 + 10\ZZ) \cap (3 + 13\ZZ)$ non-empty? We can write down a solution if we can find $u, v \in \ZZ$ such that \begin{align*} u &\equiv 1 \pmod{10} &v &\equiv 0 \pmod{10} \\ u &\equiv 0 \pmod{13} &v &\equiv 1 \pmod{13} \end{align*} because then $x= 7u + 3v$ is a solution. As $(10, 13) = 1$, we can find $r, s \in \ZZ$ such that $10r + 13s = 1$. Then $10r + 13s = 1 \implies 10r = 1 - 13s$, so can take $v = 10r$ and $13s = 1 - 10r$, so can take $u = 13s$. We can take $r = 4$, $s = -3$. Then $v = 40$, $u = -39$, so a solution is $x = -39 \times 7 + 40 \times 3$. \end{example*} \begin{flashcard}[chinese-remainder-thm] \begin{theorem}[Chinese Remainder Theorem] \label{CRT} \cloze{ Let $m_1, \ldots, m_k \in \NN$ be pairwise \gls{coprime}, i.e. such that $\gcdbrack(m_i, m_j) = 1$ if $i \neq j$. Let $M = m_1 \cdots m_k$ and suppose again $a_1, \ldots, a_k \in \ZZ$. Then there exists $x \in \ZZ$ such that $x$ satisfies \[ \begin{cases} x \equiv a_1 \pmod{m_1} \\ ~~~\,\vdots \\ x \equiv a_k \pmod{m_k} \end{cases} \] Moreover, any other solution is congruent to $x \pmod{M}$. } \end{theorem} \begin{proof} \cloze{ If $x$ is a solution, then $x + rM$ is also a solution for any $r \in \ZZ$. Why? $m_i \divides M$, so $x + rM \equiv x \pmod{m_i}$. If $y$ is another solution, then $x \equiv y \pmod{m_i}$ for all $i = 1, \ldots, k$. So $m_i \divides (x - y)$, hence $M \divides (x - y)$ as $m_i$ are pairwise \gls{coprime} (so they have no \gls{prime} factors in common). So $x \equiv y \pmod{M}$. To find a solution, let's define $M_i = \frac{M}{m_i} = \prod_{j \neq i m_j}$. Since $m_j$ are pairwise \gls{coprime}, $\gcdbrack(m_i, M_i) = 1$, there exist $r_i, s_i$ such that $r_i m_i + s_i M_i = 1$. Then \begin{align*} s_i M_i = &\equiv 1 \pmod{m_i} \\ &\equiv 0 \pmod{M_i} \\ &\equiv 0 \pmod{m_j} &&\text{(for $j \neq i$, as $m_j \divides M_i$)} \end{align*} We take \[ x = \sum_{i = 1}^k s_i M_i a_i \] Then \[ x \equiv \sum_{i = 1}^k s_i M_i a_i \pmod{m_j} \equiv s_j M_j a_j \equiv a_j \pmod{m_j} \qedhere \] } \end{proof} \end{flashcard} \begin{flashcard}[crt-ring-iso-thm] \begin{theorem} \label{CRT_ring_iso} Let $m_1, \ldots, m_k \in \NN$ be pairwise \gls{coprime}, $M = \prod_{i = 1}^k m_i$. Then the map \cloze{ \begin{align*} \theta : \ZZ / M\ZZ &\to \ZZ / m_1 \ZZ \times \cdots \times \ZZ / m_k \ZZ \\ a + M\ZZ &\mapsto (a + m_1 \ZZ, \ldots, a + m_k \ZZ) \end{align*} } is a ring isomorphism, i.e. a bijection that preserves addition and multiplication. \end{theorem} \begin{proof} \cloze{ \begin{align*} \theta(a + b + M\ZZ) &= \theta(a + M\ZZ) + \theta(b + M\ZZ) \\ \theta(ab + M\ZZ) = \theta(a + M\ZZ) \theta(b + M\ZZ) \end{align*} because addition and multiplication are defined pointwise on RHS. $\theta$ being bijective is exactly the content of the \nameref{CRT}. } \end{proof} \end{flashcard} \begin{flashcard}[crt-field-iso-coro] \begin{corollary} \label{CRT_field_iso} Let $m_1, \ldots, m_k$ be pairwise \gls{coprime} integers such that $m_i > 1$ for all $i = 1, \ldots, k$, $M = \prod_{i = 1}^k m_i$. Then there's a group isomorphism \[ \multbrack(\ZZ / M\ZZ) \equiv \cloze{\multbrack(\ZZ / m_1 \ZZ) \times \cdots \times \multbrack(\ZZ / m_k \ZZ)} \] \end{corollary} \begin{proof} \cloze{ Restrict $\theta$ from \cref{CRT_ring_iso} to the group of elements which have a multiplicative inverse. Just check that the image is what we expect. } \end{proof} \end{flashcard} We will now show that if $p$ is a prime, then $\multbrack(\ZZ / p\ZZ)$ is a cyclic group. Consequence of this and \cref{CRT_field_iso}: if $N \in \NN$ is odd, $N > 1$, then $N$ has at least 2 distinct \gls{prime} factors if and only if $\multbrack(\ZZ / N\ZZ)$ is not cyclic. \begin{flashcard}[multiplicative-defn] \begin{definition}[Multiplicative Function] \glsadjdefn{mult_fn}{multiplicative}{function} \glsadjdefn{tot_mult_fn}{totally multiplicative}{function} \cloze{A function $f : \NN \to \CC$ is \emph{multiplicative} if $\forall m, n \in \NN$ such that $\gcdbrack(m, n) = 1$, $f(mn) = f(m)f(n)$. We say $f$ is \emph{totally multiplicative} if $f(mn) = f(m)f(n)$ for all $m, n \in \NN$.} \end{definition} \end{flashcard} \begin{example*} For example $f(n) = n^k$, $k \in \NN$ is \gls{tot_mult_fn}, while $\totient$ is not \gls{tot_mult_fn} (for example $\totient(4) = 2$, but $\totient(2)\totient(2) = 1^2 \neq 2$). The next lemma will show that we can extend $\totient$ to a \gls{mult_fn} function. \end{example*} \begin{flashcard}[phi-multiplicative-defn] \begin{lemma} $\totient$ is \gls{mult_fn} if we extend $\totient$ to $\NN$ by setting $\totient(1) = 1$. \end{lemma} \begin{proof} \cloze{ Let $m, n \in \NN$, $\gcdbrack(m, n) = 1$, $m, n > 1$. Then there's an isomorphism \[ \multbrack(\ZZ / mn\ZZ) \equiv \multbrack(\ZZ / m\ZZ) \times \multbrack(\ZZ / n\ZZ) \] Note $\totient(mn)$ is equal to the cardinality of the LHS, and $\totient(m)\totient(n)$ is equal to the cardinality of the RHS. } \end{proof} \end{flashcard} \begin{flashcard}[multiplicative-fn-summed-over-factors-is-multiplicative] \begin{proposition} Let $f : \NN \to \CC$ be \cloze{a \fcemph{\gls{mult_fn}} function}, and define $g : \NN \to \CC$ by $g(n) = \sum_{d \divides n} f(d)$ ($\sum_{d \divides n}$ means sum over \emph{positive} divisors of $n$, including $1$ and $n$). \end{proposition} \begin{proof} \cloze{ Let $m, n \in \NN$, $\gcdbrack(m, n) = 1$. Then $g(mn) = \sum_{d \divides mn} f(d)$. Since $\gcdbrack(m, n) = 1$, each $d \divides mn$ admits a unique expression $d = d_1 d_2$, where $d_1 \divides m$, $d_2 \divides n$. So \begin{align*} g(mn) &= \sum_{d_1 \divides m} \sum_{d_2 \divides n} f(d_1 d_2) \\ &= \sum_{d_1 \divides m} \sum_{d_2 \divides n} f(d_1) f(d_2) \\ &= \left( \sum_{d_1 \divides m} f(d_1) \right) \left( \sum_{d_2 \divides n} f(d_2) \right) \\ &= g(m) g(n) \qedhere \end{align*} } \end{proof} \end{flashcard} \begin{example*} \glssymboldefn{sum_of_factors}{$\sigma$}{$\sigma$} If $f(n) = n^k$, then $g(n) = \sum_{d \divides n} d^k \eqdef \sigma_k(n)$ is \gls{mult_fn}. \end{example*}