%! TEX root = NT.tex % vim: tw=50 % 27/11/2023 10AM \begin{flashcard}[congruent-squares-gcd-factorisation-prop] \begin{proposition} % Proposition 6.8 \label{cong_squares_factorisation_prop} Let $N \in \NN$ be odd and composite. Suppose $\exists r, s \in \ZZ$ such that $r \not\equiv \pm s \pmod{N}$, but $r^2 \equiv s^2 \pmod{N}$. Then \cloze{$\gcdbrack(N, r + s)$ and $\gcdbrack(N, r - s)$ are non-trivial factors of $N$.} \end{proposition} \begin{proof} \cloze{By hypothesis, $r^2 \equiv s^2 \pmod{N}$ $\implies$ $(r + s)(r - s) \equiv 0 \pmod{N}$. Let's show $\gcdbrack(N, r - s)$ is a non-trivial factor of $N$ (other case is similar). $\gcdbrack(N, r - s) \divides N$, so we need to show that $\gcdbrack(N, r - s) \notin \{1, N\}$. If $\gcdbrack(N, r - s) = N$, then $N \divides r - s$ so $r \equiv s \pmod{N}$ \contradiction. If $\gcdbrack(N, r - s) = 1$, then $r- s \pmod{N}$ has a multiplicative inverse, hence $r + s \equiv 0 \pmod{N}$, so $r \equiv -s \pmod{N}$ \contradiction.} \end{proof} \end{flashcard} Directly finding $r, s$ as in the Proposition is tricky. Indeed, we look for integers $x_i$ such that $x_i^2 = c_i \pmod{N}$ for some $c_i$ such that the $c_i$ have a ``small'' number of prime factors as $i$ varies. \begin{lemma} % Lemma 6.9 Let $p_1, \ldots, p_r$ be distinct primes, and let $c_1, \ldots, c_k$ be non-zero integers divisible only by primes in $\{p_1, \ldots, p_r\}$. Then if $k > r + 1$, then there exists a non-empty subset $J \subset \{1, \ldots, k\}$ such that \[ c_J = \prod_{j \in J} c_j \] is a square. \end{lemma} \begin{proof} Pigeonhole principle: for any $J \subset \{1, \ldots, k\}$, let $c_J = \prod_{j \in J} c_j$. Write \[ c_J = (-1)^{\alpha_{J, 0}} \left( \prod_{i = 1}^r p_i^{\alpha_{J, i}} \right) b_J^2 \] where $b_J \in \NN$, $\alpha_{J, i} \in \{0, 1\}$, $i = 0, \ldots, r$. There are $2^k$ choices for a subset $J \subset \{1, \ldots, k\}$, and $2^{r + 1}$ possibilities for $\alpha_J = (\alpha_{J, 0}, \ldots, \alpha_{J, r})$. If $k > r + 1$, then there exist $J, J' \subset \{1, \ldots, k\}$ with $J \neq J'$ such that $\alpha_J = \alpha_{J'}$. Then \[ c_J c_{J'} = \left( (-1)^{\alpha_{J, 0}} \prod_{i = 1}^r p_i^{\alpha_{J, i}} \right) b_J^2 b_{J'}^2 \] is a square. Also, \[ c_J c_{J'} = \left( \prod_{j \in J} c_j \right) \left( \prod_{j \in J'} c_j \right) c_{(J \triangle J')} (c_{(J \cap J')})^2 ,\] where $J \triangle J' = (J \cup J') \setminus (J \cap J')$ (which is non-empty since $J \neq J'$). We see that $c_{J \triangle J'}$ is a square. \end{proof} \begin{flashcard}[factor-base-defn] \begin{definition}[Factor base] % Definition 6.10 \glsnoundefn{fac_base}{factor base}{factor bases} \glsnoundefn{B_num}{$B$-number}{$B$-numbers} \cloze{Let $N \in \NN$ be an odd composite integer. A \emph{factor base} is a set $B = \{-1, p_1, \ldots, p_r\}$ where the $p_i$ are \glspl{prime}. A \emph{$B$-number} is a positive integer $x$ such that all \gls{prime} factors of $\gmod{x^2}$ lie in $B$, where $\gmod{x^2}$ is the unique integer such that $\gmod{x^2} \equiv x^2 \pmod{N}$ and $-\frac{N}{2} < \gmod{x^2} < \frac{N}{2}$.} \end{definition} \end{flashcard} \vspace{-1em} We now describe the factor base method to factorise an odd composite $N \in \NN$. \begin{enumerate}[\bfseries Step 1] \item Choose a \gls{fac_base} $B$. \item Generate some \glspl{B_num} $x_1, \ldots, x_k$. \item Find a non-empty subset $J \subset \{1, \ldots, k\}$ such that $\prod_{j \in J} \gmod{x_j^2} = y^2$, some $y \in \NN$. Then if $x = \prod_{j \in J} x_j$, then $x^2 \equiv y^2 \pmod{N}$. If $x \not\equiv \pm y \pmod{N}$, then by \cref{cong_squares_factorisation_prop}, $\gcdbrack(N, x + y)$, $\gcdbrack(N, x - y)$ are non-trivial factors of $N$. If $x \equiv \pm y \pmod{N}$, then go back to Step 2 and try again. \end{enumerate} This is only a method, not an algorithm. When can this method work? If we find $x, y$ and $\gcdbrack(x, N) = \gcdbrack(y, N) = 1$, then $\frac{x}{y} \pmod{N}$ is a solution to $x^2 \equiv 1 \pmod{N}$, which we want not to equal $\pm 1 \pmod{N}$. If $N = \prod_{i = 1}^s p_i^{e_i}$, $p_i$ distinct \glspl{prime}, $e_i \ge 1$. Then \[ (\ZZ / N\ZZ)^\times \cong \prod_{i = 1}^s (\ZZ / p_i^{e_i} \ZZ)^\times .\] So there are $2^s$ solutions to $x^2 \equiv 1 \pmod{N}$. If $s \ge 2$, then we can expect $\frac{x}{y} \not\equiv \pm 1 \pmod{N}$ with probability $\frac{2^s - 2}{2^s} = 1 - 2^{1 - s} > 0$. If $s = 1$, then the method witll never give a factorisation. This is OK, as we can test whether $N = m^k$ for some $k \ge 2$ in polynomial time. For each $2 \le k \le \frac{\log N}{\log 3}$, let $x$ be the closest integer to $\sqrt[k]{N}$ and test to see if $N = x^k$. One way to generate \glspl{B_num}: consider $x$ of the form $\left\lfloor \sqrt{kN} \right\rfloor$, $\left\lfloor \sqrt{kN} \right\rfloor + 1$, for $k = 1, 2, \ldots$. Then $x^2$ should be ``close'' to a multiple of $N$, so $\gmod{x^2}$ should be ``close'' to $0$ so should have only small \gls{prime} factors. \begin{example*} $N = 1829$, $B = \{-1, 2, 3, 5, 7, 11, 13\}$. Calculate $\left\lfloor \sqrt{k1829} \right\rfloor = 42, 60, 74, 85$ for $k = 1, 2, 3, 4$. \begin{center} \begin{tabular}{c|c|c|c} $x_i$ & $\gmod{x_i^2}$ & factorisation of $\gmod{x_i^2}$ & \gls{B_num}? \\ \hline $42$ & $-65$ & $-5 \times 13$ & \cmark \\ $43$ & $20$ & $2^2 \times 5$ & \cmark \\ $60$ & $-58$ & $-2 \times 29$ & \xmark \\ $61$ & $63$ & $3^2 \times 7$ & \cmark \\ $74$ & $-11$ & $-11$ & \cmark \\ $75$ & $138$ & $2 \times 3 \times 23$ & \xmark \\ $85$ & $-91$ & $-7 \times 13$ & \cmark \end{tabular} \end{center} We find \begin{align*} (42 \times 43 \times 61 \times 85)^2 &\equiv \gmod{42^2} \times \gmod{43^3} \times \gmod{61^2} \times \gmod{85^2} \pmod{1829} \\ &= (-5 \times 13 \times 2^2 \times 5 \times 3^2 \times 7 \times -7 \times 13) \\ &= (2 \times 3 \times 5 \times 7 \times 13)^2 \end{align*} $42 \times 43 \times 61 \times 85 \equiv 1459 \pmod{1829}$. $2 \times 3 \times 5 \times 7 \times 13 = 901$. Hence if $1459 \not\equiv \pm 901 \pmod{1829}$, then $\gcdbrack(1829, 1459 \pm 901)$ are non-trivial factors of $1829$. We find $\gcdbrack(1829, 2360) = 59$, $\gcdbrack(1829, 558) = 31$, $31 \times 59 = 1829$. \end{example*} \begin{remark*} In this case, $N = \gcdbrack(N, x + y) \gcdbrack(N, x - y)$. This does not always happen. \end{remark*}