%! TEX root = NT.tex % vim: tw=50 % 24/11/2023 10AM By \cref{nexists_absolute_eul_pp}, we deduce that \[ \{b \in (\ZZ / N\ZZ)^\times \st \text{$N$ is an \gls{eul_pp} to the base $b$}\} \] is a proper subgroup of $(\ZZ / N\ZZ)^\times$. In particular, its complement contains at least half of the $b \in (\ZZ / N\ZZ)^\times$ (by the same argument as in \cref{ferm_pp_base_subgroup_prop}). This all forms the basis for the Soloray-Strassen probabilistic primality test: Steps: \begin{enumerate}[(1)] \setcounter{enumi}{-1} \item Start with $N \in \NN$ odd, $N > 1$. \item Choose $b$ at random with $1 < b < N$. Test $\gcdbrack(b, N) = 1$. If not, then $N$ is composite, and stop. \item Otherwise, test if $b^{\frac{N - 1}{2}} \equiv \jacobi{b}{N} \pmod{N}$. (Compute $\LHS$ by repeated squaring, $\RHS$ using \nameref{law_qr_jac}). If not, then $N$ is composite. \item If $b^{\frac{N - 1}{2}} \equiv \jacobi{b}{N} \pmod{N}$, then either $N$ is \gls{prime}, or $N$ is an \gls{eul_pp} to the base $b$. \end{enumerate} If we get to Step 3, then $N$ is composite with probability $\le \half$. If we carry out the whole procedure $k \ge 1$ times, then either we will prove that $N$ is composite, or we will know that $N$ is \gls{prime} with probability $\ge 1 - \frac{1}{2^k}$. We can refine this further. Suppose $p$ is an odd \gls{prime}, $a \in \ZZ$, $\gcdbrack(a, p) = 1$. Then $a^{p - 1} \equiv 1 \pmod{p}$, hence $a^{\frac{p - 1}{2}} \equiv \pm 1 \pmod{p}$ (as $p$ is \gls{prime}). If $a^{\frac{p - 1}{2}} \equiv 1 \pmod{p}$ and $4 \mid p - 1$, then $a^{\frac{p - 1}{4}} \equiv \pm 1 \pmod{p}$. If $a^{\frac{p - 1}{4}} \equiv 1 \pmod{p}$ and $8 \mid p - 1$, then $a^{\frac{p - 1}{8}} \equiv \pm 1 \pmod{p}$. \begin{flashcard}[strong-test-defn] \begin{definition}[Strong test] % Definition 6.6 \glsnoundefn{str_test}{strong test}{N/A}% \glsnoundefn{str_pp}{strong pseudoprime}{strong pseudoprimes}% \cloze{Let $N \in \NN$, odd, $N > 1$. Factor $N - 1 = 2^s t$, $t$ odd, $s \ge 1$. Let $b \in \ZZ$, $\gcdbrack(b, N) = 1$. Then we say $N$ passes the \emph{strong test} to the base $b$ if either $b^t \equiv 1 \pmod{N}$ or if $b^{2^r t} \equiv -1 \pmod{N}$ for some $0 \le r < s$. If $N$ is composite and passes the strong test to the base $b$, then we say that $N$ is a \emph{strong pseudoprime} to the base $b$. } \end{definition} \end{flashcard} \begin{example*} $N = 65$, $b = 8$. Then $N - 1 = 2^6$. Need to test whether: $b^1 \equiv 1 \pmod{p}$ or $b^{2^i} \equiv -1 \pmod{p}$ for some $0 \le i < 6$. $8 \not\equiv 1 \pmod{65}$, but $8^2 \equiv -1 \pmod{65}$. Therefore $65$ is a \gls{str_pp} to the base $8$. Now take $N = 65$, $b = 2$. Need to test whether: $2 \equiv 1 \pmod{N}$ or if $2^{2^{i}} \equiv -1 \pmod{N}$ for some $0 \le i < 6$. \begin{align*} 2 &\not\equiv \pm 1 \pmod{N} \\ 2^2 &= 4 \not\equiv -1 \pmod{N} \\ 2^{2^2} &= 16 \not\equiv -1 \pmod{N} \\ 2^{2^3} &= 16^2 = 4 \times 8^2 \equiv -4 \not\equiv -1 \pmod{N} \\ 2^{2^4} &= (-4)^2 \equiv 16 \not\equiv -1 \pmod{N} \\ 2^{2^5} &= (16)^2 \equiv 4 \not\equiv -1 \pmod{N} \end{align*} Hence $65$ does not pass the \gls{str_test} to the base $2$. \end{example*} \begin{remark*} If $N$ is a \gls{str_pp} to the base $b$, then it's also an \gls{eul_pp} to the base $b$. \end{remark*} \vspace{-1em} You can show that if $N \in \NN$ is odd and composite, then it's a \gls{str_pp} to at most $\quarter$ of bases $b \in (\ZZ / N\ZZ)^\times$. This leads to the Miller-Rabin probabilistic primality test. \begin{enumerate}[(1)] \item Choose $1 < b < N$ at random, and test if $\gcdbrack(b, N) = 1$. \item If $\gcdbrack(b, N) = 1$, test to see if $N$ passes the \gls{str_test} to the base $b$. \item If it doesn't pass, then $N$ is composite. If it does pass, then $N$ is composite with probability $\le \quarter$. \end{enumerate} If we assume the generalised Riemann hypothesis, then we can use the strong test to get a deterministic polynomial-time primality test. \begin{theorem} % Theorem 6.7 Assume Generalised Riemann Hypothesis. Let $N \in \NN$ be odd and composite. Then there exists $b \in \NN$, $b < 2(\log N)^2$, such that $N$ is not a \gls{str_pp} to the base $b$. \end{theorem} \vspace{-1em} So, assuming Generalised Riemann Hypothesis, can prove $N$ is \gls{prime} / composite by carrying out \gls{str_test} for all $b < 2(\log N)^2$. There is an unconditional (not assuming any unproved conjectures) polynomial-time primality test: the Agrawal-Kayal-Saxena test. This is harder to implement than the \gls{str_test}. We now discuss factorisation. Suppose $N \in \NN$ is odd and composite. Say $N = ab$, $a > b > 1$. Then $N = \left( \frac{a + b}{2} \right)^2 - \left( \frac{a - b}{2} \right)^2$. Conversely, if $N = r^2 - s^2$, where $r, s \in \NN$, $r > s + 1$, then $N = (r + s)(r - s)$ is a non-trivial factorisation. This leads to Fermat factorisation: Assume $N$ is not a perfect square. Then test each of $r = \lfloor \sqrt{N} \rfloor + 1, \lfloor \sqrt{N} \rfloor + 2, \lfloor \sqrt{N} \rfloor + 3, \ldots$ to see if $r^2 - N$ is a perfect square, say $r^2 - N = s^2$, $s \in \NN$. If $r = \frac{a + b}{2}$, then $r > \sqrt{ab} = \sqrt{N}$. So this will find the factorisation $N = ab$, and after at most $\frac{a - b}{2}$ steps. This is useful if we know that $N = ab$ has a factorisation where $|a - b|$ is small. \begin{example*} $N = 200819$. $\lfloor \sqrt{200819} \rfloor = 448$. $449^2 - N = 782$ (not a square). But $450^2 = 1681 = 41^2$. So $N = 200819 = (450 + 41)(450 - 41) = 491 \times 409$. \end{example*}