%! TEX root = NT.tex % vim: tw=50 % 17/11/2023 10AM \vspace{-2em} \begin{enumerate}[(3)] \setcounter{enumi}{3} \item Induction on $n$. $n = 0$: $\contf[a_0, \beta] = \fcontf[a_0, \beta] = \frac{\beta a_0 + 1}{\beta}$. In general, $\contf[a_0, \ldots, a_{n + 1}, \beta] = \contf[a_0, \ldots, a_n, \contf[a_{n + 1}, \beta]] = \contf[a_0, \ldots, a_n, \gamma]$, where $\gamma = \contf[a_{n + 1}, \beta]$. By induction, this is \[ \frac{\gamma p_n + p_{n - 1}} {\gamma q_n + q_{n - 1}} = \frac{a_{n + 1} p_n + \beta^{-1} p_n + p_{n - 1}} {a_{n + 1} q_n + \beta^{-1} q_n + q_{n - 1}} = \frac{p_{n + 1} + \beta^{-1} p_n} {q_{n + 1} + \beta^{-1} q_n} = \frac{\beta p_{n + 1} + p_n} {\beta q_{n + 1} + q_n} .\] \[ \frac{p_n}{q_n} - \frac{p_{n - 1}}{q_{n - 1}} = \frac{(-1)^{n - 1}}{q_n q_{n - 1}} \implies \frac{p_n}{q_n}, \frac{p_{n - 1}}{q_{n - 1}} \text{are distinct} \] Simple fact: if $x, y, x;, y' \in \RR$, $y, y' > 0$, $\frac{x}{y} < \frac{x'}{y'}$, then \[ \frac{x}{y} < \frac{x + x'}{y + y'} < \frac{x'}{y'} .\] Here: take \[ \frac{x}{y} = \min \left( \frac{\beta p_n}{\beta q_n}, \frac{p_{n - 1}}{q_{n - 1}} \right) \qquad \frac{x'}{y'} = \max \left( \frac{\beta p_n}{\beta q_n}, \frac{p_{n - 1}}{q_{n - 1}} \right) \fakeqedhere \] \end{enumerate} \begin{flashcard}[convergents-converge-to-theta] \begin{theorem} % Theorem 5.4 Let $\theta \in \RR \setminus \QQ$, $\theta = \contf[\acf_0, \acf_1, \acf_2, \ldots]$. Then: \begin{enumerate}[(1)] \item $\left| \theta - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n + 1}}$ for all $n \ge 0$. \item $\lim_{n \to \infty} \frac{p_n}{q_n} = \lim_{n \to \infty} \contf[a_0, \ldots, a_n] = \theta$. \end{enumerate} \end{theorem} \textbf{Reminder:} $\frac{p_n}{q_n}$ are called the \glspl{convergent} of $\contf[a_0, a_1, \ldots]$. \begin{proof} \cloze{ We know $\theta = \contf[a_1, a_2, \ldots, a_{n + 1}, \theta_{n + 2}]$ for all $n \ge 0$. So \[ \theta = \frac{\theta_{n + 2} p_{n + 1} + p_n}{\theta_{n + 2} q_{n + 1} + q_n} \] lies strictly between $\frac{p_n}{q_n}$ and $\frac{p_{n + 1}}{q_{n + 1}}$. Therefore \[ \left| \theta - \frac{p_n}{q_n} \right| \le \left| \frac{p_n}{q_n} - \frac{p_{n + 1}}{q_{n + 1}} \right| = \frac{}{q_n q_{n + 1}} \] (inequality must be strict as $\theta \notin \QQ$). We've observed that $0 < q_1 < q_2 < \cdots$, so $q_n \to \infty$ as $n \to \infty$. } \end{proof} \end{flashcard} \begin{remark*} You can show that $\theta \mapsto \contf[a_0, a_1, \ldots]$ induces a bijection \[ \RR \setminus \QQ \simto \ZZ \times \NN^\NN .\] \end{remark*} \begin{example*} $\pi = \contf[3, 7, 15, 1, 292, 1, \ldots]$. First few \glspl{convergent}: \begin{align*} \contf[3] &= \calccontf[3] \\ \contf[3, 7] &= \calccontf[3, 7] \\ \contf[3, 7, 15] &= \calccontf[3, 7, 15] \\ \contf[3, 7, 15, 1] &= \calccontf[3, 7, 15, 1] \end{align*} \end{example*} \vspace{-1em} We now prove two theorems making precise the sense in which the \glspl{convergent} of $\theta \in \RR \setminus \QQ$ give a sequence of ``best possible'' rational approximations to $\theta$. \begin{flashcard}[good-approximation-must-be-a-convergent] \begin{theorem} % Theorem 5.5 \label{convergent_optimal_approximation} Let $\theta \in \RR \setminus \QQ$, $p \in \ZZ$, $q \in \NN$. Then: \begin{enumerate}[(1)] \item \cloze{If $q < q_{n + 1}$, then $|q\theta - p| \ge |q_n\theta - p_n|$.} \item \cloze{If $\left| \theta - \frac{p}{q} \right| < \left| \theta - \frac{p_n}{q_n} \right|$, then $q > q_n$.} \end{enumerate} \end{theorem} \begin{proof} \cloze{ First prove (1) $\implies$ (2): Suppose $q \le q_n$. Then $q < q_{n + 1}$, so $|q\theta - p| \ge |q_n\theta - p_n|$. So \[ \left| \theta - \frac{p}{q} \right| = \frac{1}{q} |q\theta - p| \ge \frac{1}{q_n} |q_n \theta - p_n| = \left| \theta - \frac{p_n}{q_n} \right| .\] Now we prove (1): there exist integers $u, v \in \ZZ$ such that \[ \begin{pmatrix} p_n & p_{n + 1} \\ q_n & q_{n + 1} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} p \\ q \end{pmatrix} \] since \[ \det \begin{pmatrix} p_n & p_{n + 1} \\ q_n & q_{n + 1} \end{pmatrix} \in \{\pm 1\} \] we can invert the matrix over integers. Then \[ \begin{cases} p_n u + p_{n + 1} v = p \\ q_n u + q_{n + 1} v = q \end{cases} \implies q\theta - p = u(q_n\theta - p_n) + v(q_{n + 1} \theta - p_{n + 1}) \] If $v = 0$, then $|q\theta - p| = |u| |q_n\theta - p_n|$. $u$ is a non-negative integer, so \[ |q\theta - p| \ge |q_n\theta - p_n| .\] If $v \neq 0$, then $q = q_{n + 1} v + q_n u$ and $q < q_{n + 1}$. Hence $u, v$ must have opposite signs, with $u \neq 0$. The sign of $q_n \theta - p_n$ is the same as the sign of $\theta - \frac{p_n}{q_n}$, which is the oppositve of the sign of $\theta - \frac{p_{n + 1}}{q_{n + 1}}$. Therefore $u(q_n\theta - p_n)$ and $v(q_{n + 1}\theta - p_{n + 1})$ have the same sign. Therefore \begin{align*} |q\theta - p| &= |u| |q_n\theta - p_n| + |v| |q_{n + 1}\theta - p_{n + 1}| \\ &\ge |q_n\theta - p_n| \end{align*} as $u \neq 0$.} \end{proof} \end{flashcard} \begin{flashcard}[convergent-approximates-well] \begin{theorem} % Theorem 5.6 Let $\theta \in \RR \setminus \QQ$. Then \begin{enumerate}[(1)] \item \cloze{For all $n \ge 0$, there exists $\frac{p}{q} \in \{\frac{p_n}{q_n}, \frac{p_{n + 1}}{q_{n + 1}}\}$ such that \[ \left| \theta - \frac{p}{q} \right| < \frac{1}{2q^2} .\]} \item \cloze{If $p \in \ZZ$, $q \in \NN$, and $\left| \theta - \frac{p}{q}\right| < \frac{1}{2q^2}$, then $\frac{p}{q}$ is a convergent of $\theta$.} \end{enumerate} \end{theorem} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item \cloze{Again use that $\theta - \frac{p_n}{q_n}$, $\theta - \frac{p_{n + 1}}{q_{n + 1}}$ has opposite sign. Hence \begin{align*} \left| \theta - \frac{p_n}{q_n} \right| + \left| \theta - \frac{p_{n + 1}}{q_{n + 1}} \right| &= \left| \frac{p_n}{q_n} - \frac{p_{n + 1}}{q_{n + 1}} \right| \\ &= \frac{1}{q_n q_{n + 1}} \\ &< \half \left( \frac{1}{q_n^2} + \frac{1}{q_{n + 1}^2} \right) \end{align*} So we have $\left| \theta - \frac{p_i}{q_i} \right| < \frac{1}{2q_i^2}$ for at least one $i \in \{n, n + 1\}$. $\alpha, \beta$ distinct, positive real numbers. Therefore \[ (\alpha - \beta)^2 > 0 \implies \half (\alpha^2 + \beta^2) > \alpha \beta .\]} \item \cloze{Choose $n \ge 0$ soc that $q_n \le q < q_{n + 1}$. Then $|q\theta - p| \ge |q_n\theta - p_n|$, by \cref{convergent_optimal_approximation}(1). We consider \begin{align*} \left| \frac{p}{q} - \frac{p_n}{q_n} \right| &\le \left| \theta - \frac{p}{q} \right| + \left| \theta - \frac{p_n}{q_n} \right| \\ &= \frac{1}{q} |q\theta - p| + \frac{1}{q_n} |q_n\theta - p_n| \\ &\le \left( \frac{1}{q} + \frac{1}{q_n} \right) (q\theta - p) \\ &< \left( \frac{1}{q} + \frac{1}{q_n} \right) \frac{1}{2q} \end{align*} Suppose for contradiction that $\frac{p}{q} \neq \frac{p_n}{q_n}$. Then \[ \left| \frac{p}{q} - \frac{p_n}{q_n} \right| = \left| \frac{pq_n - p_n q}{qq_n} \right| \ge \frac{1}{qq_n} \] so \begin{align*} \frac{1}{qq_n} < \left( \frac{1}{q} + \frac{1}{q_n} \right) &\implies \frac{1}{q_n} < \frac{1}{2q} + \frac{1}{2q_n} \\ &\implies \frac{1}{2q_n} < \frac{1}{2q} \\ &\implies q < q_n \contradiction \qedhere \end{align*}} \end{enumerate} \end{proof} \end{flashcard} \textbf{Application:} If $d \in \NN$ is a non-square, can find solutions to \emph{Pell's equation} $x^2 - dy^2 = 1$, with $x, y \in \NN$? If $(p, q)$ is a solution, then \begin{align*} \left( \frac{p}{q} \right)^2 - d &= \frac{1}{q^2} \\ \implies \frac{p}{q} - \sqrt{d} &= \frac{1}{q^2} \frac{1}{\frac{p}{q} + \sqrt{d}} < \frac{1}{2q^2} \\ \implies \frac{p}{q} \text{ is a con}&\text{vergent of} \sqrt{d} \in \RR \setminus \QQ \end{align*}