%! TEX root = NT.tex % vim: tw=50 % 15/11/2023 10AM \newpage \section{Continued Fractions} $\alpha \in \RR$ $\to$ decimal expansion $\alpha = \sum \frac{a_i}{10^i}$, $a_i \in \{0, 1, 2, \ldots, 9\}$. Useful properties: if $\alpha, \beta \in \RR$ are distinct then it's easy to decide whether $\alpha < \beta$ or $\alpha > \beta$ if you know their decimal expansions. Continued fractions give another way of representing real numbers by sequences of integers. Useful properties: allow us to find good rational approximations for $\alpha \in \RR$. For example, for $\alpha = \pi$: \begin{align*} \left| \pi - \frac{314159}{100000} \right| &< 3 \times 10^{-6} \\ \left| \pi - \frac{355}{113} \right| &< 3 \times 10^{-7} \end{align*} The second approximation is ``better'', as it's closer to $\pi$ and $113$ is much smaller than $100000$. $\frac{355}{113}$ is a truncation of the continued fraction expansion of $\pi$. \begin{notation*} Suppose $a_0, \ldots, a_n \in \RR$, $a_i > 0$ if $i > 0$. Then \[ [a_0, \ldots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_n}}}} \] A continued fraction. \end{notation*} \vspace{-1em} So $\contf[a_0, a_1] = \fcontf[a_0, a_1]$, $\contf[a_0, a_1, a_2] = \fcontf[a_0, a_1, a_2] = \contf[a_0, \contf[a_1, a_2]]$. In general, $\contf[a_0, \ldots, a_n] = \contf[a_0, \ldots, a_{i - 1}, \contf[a_i, \ldots, a_n]]$ for any $1 \le i \le n$. Continued fraction algorithm: start with $\theta \in \RR$. Produce a sequence $a_0, a_1, \ldots$ of integers with $a_i \ge 1$ and a sequence $\theta = \theta_0, \theta_1, \theta_2, \ldots$ of real numbers such that if $\theta_{n + 1}$ is defined for $n \ge 0$, then $\theta = \contf[a_0, a_1, \ldots, a_n, \theta_{n + 1}]$. Either the algorithm will terminate: get finite sequence $a_0, \ldots, a_n, \theta_{n - 1} = a_n$ such that $\theta = \contf[a_0, \ldots, a_n]$. \glsnoundefn{cfe}{continued fraction expansion}{continued fraction expansions} Or the algorithm does not terminate: then sequence $(a_i)_{i \ge 0}$ is infinite and we write finally $\theta = \contf[a_0, a_1, a_2, \ldots]$ and call this the continued fraction expansion of $\theta$. We'll show later that in this case, \[ \theta = \lim_{n \to \infty} \contf[a_0, \ldots, a_n] .\] \begin{flashcard}[contf-algorithm] \glsnoundefn{cfalg}{continued fraction algorithm}{N/A} \prompt{Continued fraction algorithm?} \cloze{Step 0: $\theta = \theta_0$. Set $a_0 = \left\lfloor \theta_0 \right\rfloor$. If $a_0 = \theta_0$ then stop. Otherwise, $0 < \theta_0 - a_0 < 1$ $\implies$ if we set $\theta_1 = \frac{1}{\theta_0 - a_0}$, then $\theta_1 > 1$ and $\theta = \contf[a_0, \theta_1]$. Step 1: set $a_1 = \left\lfloor \theta_1 \right\rfloor$. If $a_1 = \theta_1$ then stop (and $\theta = \contf[a_0, a_1]$). Otherwise, $0 < \theta_1 - a_1 < 1$, so if we set $\theta_2 = \frac{1}{\theta_1 - a_1}$, then $\theta_2 > 1$ and $\theta = \contf[a_0, \contf[a_1, \theta_2]] = \contf[a_0, a_1, \theta_2]$. Step $n$, $n \ge 1$: Set $a_n = \left\lfloor \theta_n \right\rfloor \ge 1$, as $\theta_n > 1$. If $a_n = \theta_n$ then stop (and then $\theta = \contf [a_0, \ldots, \theta_n] = \contf[a_0, \ldots, a_n]$). Otherwise, $0 < \theta_n - a_n < 1$, so if we set $\theta_{n + 1} = \frac{1}{\theta_n - a_n}$, then $\theta_{n + 1} > 1$ and $\theta = \contf[a_0, \ldots, a_{n - 1}, \theta_n] = \contf[a_0, \ldots, a_{n - 1}, \contf[a_n, \theta_{n + 1}]] = \contf[a_0, \ldots, a_n, \theta_{n + 1}]$.} \end{flashcard} \begin{notation*} \glssymboldefn{acf}{$a_i$}{$a_i$} $(a_i)_{i \ge 0}$ are called the partial quotients of $\theta \in \RR$. \end{notation*} \vspace{-1em} So $\theta_1 = \frac{c_1}{c_2}$, where $c_1, c_2 \in \NN$, $c_1 > c_2$, $\gcdbrack(c_1, c_2) = 1$. Apply Euclid's algorithm to $c_1, c_2$. Get: \begin{align*} c_1 &= d_1 c_2 + c_3 &&c_2 > c_3 > 0 \\ c_2 &= d_2 c_3 + c_4 &&c_3 > c_4 > 0 \\ &~~~\vdots \\ c_{n - 1} &= d_{n - 1} c_n + c_{n + 1} &&c_n > c_{n + 1} > 0 \\ c_n &= d_n c_{n + 1} &&c_{n + 1} = 1, c_{n + 2} = 0 \\ \end{align*} \begin{claim*} If $1 \le i \le n$, then $\theta_i = \frac{c_i}{c_{i + 1}}$. (In particular, \gls{cfalg} doesn't terminate before Step $n$). \end{claim*} \vspace{-1em} If $i = 1$, $\theta_1 = \frac{c_1}{c_2}$. If $\theta_i = \frac{c_i}{c_{i + 1}}$, $i < n$, then $c_i = d_i c_{i + 1} + c_{i + 2}$. Hence \[ \frac{c_i}{c_{i + 1}} = \theta_i = d_i + \frac{c_{i + 2}}{c_{i + 1}}, \qquad \frac{c_{i + 2}}{c_{i + 1}} < 1 .\] So $a_i = \left\lfloor \theta_i \right\rfloor = d_i$, $\theta_{i + 1} = \frac{1}{\theta_i - a_i} = \frac{c_{i + 1}}{c_{i + 2}}$. So the claim is true by induction. Algorithm terminates at step $n$: $\theta_n = \frac{c_n}{c_{n + 1}} = d_n \in \ZZ$ hence $\left\lfloor \theta_n \right\rfloor = \theta_n = a_n$. \fakeqedhere \begin{definition} Suppose $(a_i)_{i \ge 0}$ is a sequence of integers, $a_i \ge 1$ if $i \ge 1$. Then we define sequences $(p_n)_{n \ge 0}$, $(q_n)_{n \ge 0}$ recursively by \begin{align*} p_0 &= a_0 & p_1 &= a_0 a_1 + 1 & p_n &= a_n p_{n - 1} + p_{n - 2} \\ q_0 &= 1 & q_1 &= a_1 & q_n &= a_n q_{n - 1} + q_{n - 2} \end{align*} for $n \ge 2$. \end{definition} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item We can define $p_{-1} = 1$, $q_{-1} = 0$. Then the recurrence relation holds also for $n = 1$. \item We can write the recurrence relation as a matrix equation: \[ \begin{pmatrix} p_n & p_{n - 1} \\ q_n & q_{n - 1} \end{pmatrix} = \begin{pmatrix} p_{n - 1} & p_{n - 2} \\ q_{n - 1} & q_{n - 2} \end{pmatrix} \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \] Hence \[ \begin{pmatrix} p_n & p_{n - 1} \\ q_n & q_{n - 1} \end{pmatrix} = \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \] \item The sequenc e$0 < q_1 < q_2 < q_3 < \cdots$ is strictly increasing, as $\acf_n \ge 1$ when $n \ge 1$. Hence $q_n \ge q_{n - 1} + q_{n - 2}$ when $n \ge 1$. \glsnoundefn{convergent}{convergent}{convergents} \item If $\contf[a_0, a_1, \ldots]$ is the \gls{cfe} of $\theta \in \RR$, then $\left( \frac{p_n}{q_n} \right)_{n \ge 0}$ is called the sequence of convergents of $\theta$. \end{enumerate} \end{remark*} \begin{proposition} $(a_i)_{i \ge 0}$ sequence of integers, $a_i \ge 1$ if $i \ge 1$. Then: \begin{enumerate}[(1)] \item $\forall n \ge 0$, $\contf[a_0, \ldots, a_n] = \frac{p_n}{q_n}$. \item $\forall n \ge 1$, $p_n q_{n - 1} - p_{n - 1} q_n = (-1)^{n - 1}$, $(p_n, q_n) = 1$, $\frac{p_n}{q_n} - \frac{p_{n - 1}}{q_{n - 1}} = \frac{(-1)^{n - 1}}{q_n q_{n - 1}}$. \item If $\beta \in \RR$, $\beta > 0$ and $n \ge 0$, then \[ \contf[a_0, \ldots, a_n, \beta] = \frac{\beta p_n + p_{n - 1}}{\beta q_n + q_{n - 1}} ,\] and this number lies strictly between $\frac{p_n}{q_n}$ and $\frac{p_{n - 1}}{q_{n - 1}}$. \end{enumerate} Important special case: If $\theta$ has \gls{cfe} $\contf[a_0, a_1, \ldots]$ then \[ \theta = \contf[a_0, \ldots, a_n, \theta_{n + 1}] = \frac{\theta_{n + 1} p_n + p_{n - 1}}{\theta_{n + 1} q_n + q_{n - 1}} .\] \end{proposition} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item Follows from (3) (case $\beta = a_{n + 1}$). \item Take determinants in the matrix expression for \[ \begin{pmatrix} p_n & p_{n - 1} \\ q_n & q_{n - 1} \end{pmatrix} \] and we deduce $p_n q_{n - 1} - q_{n - 1} q_n = (-1)^{n - 1}$. This shows $\gcdbrack(p_n, q_n) = 1$ and \[ \frac{p_n}{q_n} - \frac{p_{n - 1}}{q_{n - 1}} = \frac{(-1)^{n - 1}}{q_n q_{n - 1}} .\] \end{enumerate} \renewcommand\qed{} \end{proof}