%! TEX root = NT.tex % vim: tw=50 % 13/11/2023 10AM \vspace{-2em} Suppose $x > 4$, and $2^k \le x < 2^{k + 1}$, for some $k \ge 2$. Then \[ \pc(x) \le \pc(2^{k + 1}) \le \frac{3 \times 2^{k + 1}}{k + 1} \le \frac{6 \times 2^k}{k} = 6 \log 2 \cdot \frac{2^k}{k \log 2} = 6 \log 2 \cdot f(2^k) \] where $f(x) = \frac{x}{\log x}$. Note that \[ f'(x) = \frac{\log x - 1}{(\log x)^2} \] and $f'(x) > 0$ when $x > e$. Hence $f(x)$ is increasing on $(4, \infty)$. Hence \[ \pc(x) \le 6 \log 2 \cdot f(x) = 6 \log 2 \frac{x}{\log x} .\] We now find a lower bound for $\pi(x)$. Let $n \in \NN$, $N = {2n \choose n}$. We know if $p$ is a \gls{prime} and $p \divides N$, then $p \le 2n$. So \[ N = \prod_p p^{\padic_p(N)} = \prod_{p \le 2n} p^{\padic_p(N)} \le \prod_{p \le 2n} (2n) = (2n)^{\pc(2n)} .\] We also know that $N \ge \frac{2^{2n}}{2n}$, hence \[ \frac{2^{2n}}{2n} \le N \le (2n)^{\pc(2n)} .\] Hence \begin{align*} \implies 2^{2n} &\le (2n)^{\pc(2n) + 1} \\ \implies 2n \log 2 &\le (\pc(2n) + 1) \log 2n \\ \implies \pc(2n) &\ge \frac{2n}{\log 2n} \cdot \log 2 - 1 \end{align*} Now suppose $X > 4$, and choose $n \in \NN$ so that $2n \le x \le 2n + 2$. Then \[ \pc(x) \ge \pc(2n) \ge \frac{2n}{\log 2n} \cdot \log 2 - 1 \ge \frac{x - 2}{\log x} \cdot \log 2 - 1 .\] \textbf{Claim:} If $x \ge 16$, then \[ \frac{x - 2}{\log x} \log 2 - 1 \ge \frac{x}{\log x} \frac{\log 2}{2} .\] Proof of the claim: Equivalent to \[ \label{lec17_l48_eq} \frac{\log 2}{2} \frac{x}{\log x} - \frac{2 \log 2}{\log x} - 1 \ge 0 \tag{$*$} \] Plugging in $x = 16$, we get \[ \frac{\log 2}{2} \cdot \frac{16}{4 \log 2} - \frac{2 \log 2}{4 \log 2} - 1 = 2 - \half - 1 = \half \ge 0 .\] Note the $\RHS$ of \eqref{lec17_l48_eq} is increasing when $x \ge 16$. This claim now implies \[ \pc(x) \ge \frac{\log 2}{2} \frac{x}{\log x} \] when $x \ge 16$. Remains to consider $4 < x \le 16$. $\frac{x}{\log x}$ is increasing implies the largest value of $\frac{\log 2}{2} \frac{x}{\log x}$ in thsi range is \[ \frac{\log 2}{2} \cdot \frac{16}{4 \log 2} = 2 .\] Certainly $\pc(x) \ge 2$ when $4 < x \le 16$. \fakeqedhere \begin{theorem}[Bertrand's Postulate] \label{bertrands_postulate} If $n \in \NN$, $n > 1$, then there exists a \gls{prime} $p$ such that $n \le p < 2n$. \end{theorem} \vspace{-1em} We first prove: \begin{lemma} \label{primorial_upper_bound_lemma} \glssymboldefn{primorial}{$P$}{$P$} Let $x \ge 1$, $P(x) = \prod_{p \le x} p$. Then $P(x) \le 4^x$. \end{lemma} \begin{proof} It suffices to show $\primorial(x) \le 4^x$ when $x = n \in \NN$. We do this b induction on $n$. It holds for $n = 1, 2$. For the finduction step, consider for $k \in \NN$, \[ 2{2k + 1 \choose k + 1} = {2k + 1 \choose k + 1} + {2k + 1 \choose k} \le (1 + 1)^{2k + 1} = 2^{2k + 1} .\] If $p$ is a \gls{prime} and $k + 2 \le p \le 2k + 1$, then $p \divides {2k + 1 \choose k + 1}$. So \[ \primorial (2k + 2) = \primorial(2k + 1) = \prod_{p \le 2k + 1} p = \prod_{p \le k + 1} p \prod_{k + 2 \le p \le 2k + 1} p .\] By induction, \[ \primorial(2k + 1) \le 4^{k + 1} {2k + 1 \choose k + 1} \le 4^{k + 1} 4^k = 4^{2k + 1} .\] Hence, $\primorial(2k + 1) \le 4^{2k + 1}$, and $\primorial(2k + 2) = \primorial(2k + 1) \le 4^{2k + 1} \le 4^{2k + 2}$. \end{proof} \begin{proof}[Proof of \cref{bertrands_postulate}] Let $n \in \NN$, $n > 1$, and suppose for contradiction that there are no \glspl{prime} $p$ with $n \le p < 2n$. Consider $N = {2n \choose n}$. We proved in \cref{chebyshev_lemmas} that if $p \divides N$, then either $p > n$ or $p \le \frac{2n}{3}$. So in fact (since we're assuming there are no primes between $n$ and $2n$), \[ N = \prod_{p \le \frac{2n}{3}} p^{\padic_p(N)} .\] Write $N = N_1 N_2$, where \[ N_1 = \prod_{\substack{p \divides N \\ \padic_p(N) = 1}}, \qquad N_2 = \prod_{p \divides N \\ \padic_p(N) \ge 2} p^{\padic_p(N)} .\] By \cref{primorial_upper_bound_lemma}, we have \[ N_1 \le \primorial \left( \frac{2n}{3} \right) \le 4^{\frac{2n}{3}} .\] If $p$ is \gls{prime} and $\padic_p(N) \ge 2$, then (by \cref{chebyshev_lemmas}), $p^{\padic_p(N)} \le 2n \implies p \le \sqrt{2n}$. So \[ \frac{2^{2n}}{2n} \le N = N_1 N_2 \le 4^{\frac{2n}{3}} (2n)^{\sqrt{2n}} .\] (as product over \glspl{prime} $p \le \sqrt{2n}$). Rearrange: \begin{align*} 2^{2n} - \frac{4n}{3} &\le (2n)^{1 + \sqrt{2n}} \\ \implies \frac{2n}{3} \log 2 &\le (1 + \sqrt{n}) \log 2n \end{align*} This is a contradiction when $n$ is large enough (as $\frac{(1 + \sqrt{2n})\log 2n}{2n} \to 0$ as $n \to \infty$). In fact, this gives a contradiction when $n \ge 500$, so the theorem holds in this case. To complete the proof for $1 < n < 500$, can either check every case by hand, or note that it's enough to find a sequence $2 = p_1, p_2, \ldots, p_r$ of primes such that: \begin{itemize} \item $\forall i = 1, \ldots, r - 1$, $p_{i + 1} \le 2p_i + 1$. \item $p_r < 500$. \end{itemize} (as then the intervals $\left(\frac{p}{2}, p\right]$ cover $\NN \cap (1, 500)$). We can take $2, 5, 11, 23, 47, 89, 179, 359, 719$. \end{proof}