%! TEX root = NT.tex % vim: tw=50 % 10/11/2023 10AM \begin{flashcard}[legendres-formula-prop] \begin{proposition}[Legendre's Formula] \label{legendres_formula} \cloze{ Let $X > 1$. Then \[ \pc(x) - \pc(\sqrt{x}) + 1 = \#\{1 \le n \le x \st \gcdbrack(n, P) = 1\} = \sum_{d \divides P} \mobius(d) \left\lfloor \frac{x}{d} \right\rfloor \] where \[ P = \prod_{\substack{p \le \sqrt{x} \\ \text{\gls{prime}}}} p ,\] and $\mobius$ is the \gls{mobius_function}. } \end{proposition} \begin{proof} \cloze{ If $n \in \NN$, $n > 1$, $n \le x$, then $n$ is \gls{prime} if and only if there does not exist a \gls{prime} $q \le \sqrt{x}$ such that $q \mid n$ (if $n = ab$ with $a \le b$ then $a \le \sqrt{x}$). So \begin{align*} \{1 \le n \le x \st \gcdbrack(n, P) = 1\} &= \{1\} \cup \{p \le x \text{ \gls{prime}} \st \gcdbrack(p, P) = 1\} \\ &= \{1\} \cup \{p \le x \text{ \gls{prime}} \st p > \sqrt{x}\} \end{align*} and \[ \#\{1 \le n \le x \st \gcdbrack(n, P) = 1\} = 1 + \pc(x) - \pc(\sqrt{x}) .\] Last time we showed that if $n \in \NN$, then \[ \sum_{d \divides n} \mobius(d) = \begin{cases} 1 & n = 1 \\ 0 & n > 1 \end{cases} \] So \begin{align*} \#\{1 \le n \le x \st \gcdbrack(n, P) = 1\} &= \sum_{1 \le n \le x} \sum_{d \divides \gcdbrack(n, P)} \mobius(d) \\ &= \sum_{d \divides P} \mobius(d) \sum_{\substack{1 \le n \le x \\ d \divides n}} 1 \\ &= \sum_{d \divides P} \mobius(d) \left\lfloor \frac{x}{d} \right\rfloor \qedhere \end{align*} } \end{proof} \end{flashcard} \begin{flashcard}[vp-defn] \begin{definition} \glssymboldefn{p_adic}{$\nu_p$}{$\nu_p$} Let $N \in \NN$, $p$ a \gls{prime} number. Then \[ \nu_p(N) = \cloze{\text{$p$-adic valuation of $N$}} = \cloze{\text{exponent of $p$ in \gls{prime} factorisation of $N$}} .\] \cloze{So $N = p^{\nu_p(N)} N_1$, $N_1 \in \NN$, $\gcdbrack(p, N_1) = 1$.} \end{definition} \end{flashcard} \begin{note*} $\padic_p(N) = 0 \iff p \ndivides N$. If $N, M \in \NN$, then $\padic_p(NM) = \padic_p(N) + \padic_p(M)$. \end{note*} \begin{lemma} \label{chebyshev_lemmas} Let $n \in \NN$, $N = {2n \choose n} = \frac{(2n)!}{(n!)^2}$. Then: \begin{enumerate}[(1)] \item $\frac{2^{2n}}{2n} \le N < 2^{2n}$. \item If $p$ is \gls{prime}, and $n < p \le 2n$, then $\padic_p(N) = 1$. \item If $p$ is an odd \gls{prime}, and $\frac{2n}{3} < p \le n$, then $\padic_p(N) = 0$. \item For any \gls{prime} $p$, $p^{\padic_p(N)} \le 2n$. \end{enumerate} \end{lemma} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item $2^{2n} = (1 + 1)^{2n} = \sum_{i = 0}^{2n} {2n \choose i} = 2 + \sum_{i = 1}^{2n - 1} {2n \choose i} \ge 2 + {2n \choose n} = 2 + N$. Hence $N < 2^{2n}$. If $1 \le i \le 2n - 1$, then ${2n \choose i} \le {2n \choose n}$. So \[ 2^{2n} \le 2 + (2n - 1) {2n \choose n} \le (2n) {2n \choose n} = 2nN .\] Therefore $N \ge \frac{2^{2n}}{2n}$. \item \[ {2n \choose n} = \frac{(2n)(2n - 1) \cdots (n + 1)}{(n)(n - 1) \cdots (1)} \] $n < p \le 2n$ $\implies$ $p$ does not divide the denominator. Also, there's exactly one multiple of $p$ in the numerator, namely $p$ itself. So \[ \padic_p(N) = \ub{\padic_p((2n) \cdots (n + 1))}_{=1} - \ub{\padic_p(n(n - 1) \cdots (1))}_{=0} .\] \item Now $p$ is an odd prime with $\frac{2n}{3} < p \le n$. So $\frac{4n}{3} < 2p \le 2n$, $2n < 3p$. So in \[ {2n \choose n} = \frac{(2n)(2n - 1) \cdots (n + 1)}{(n)(n - 1) \cdots (1)} \] the only multiple of $p$ in the denominator is $p$, and the only multiple of $p$ in the numerator is $2p$. So \[ \padic_p(N) = \padic_p(2p) - \padic_p(p) = 1 - 1 = 0 \] as $p$ is odd. \item We will use the formula ($n \in \NN$, $p$ \gls{prime}), \[ \padic_p(n!) = \sum_{i = 1}^\infty \left\lfloor \frac{n}{p^i} \right\rfloor \] (to be proved on \es{3}). Note the sum is finite as when $p^i > n$, $\frac{n}{p^i} < 1$ so $\left\lfloor \frac{n}{p^i} \right\rfloor = 0$. We want to show that $p^{\padic_p(N)} \le 2n$, or that is $k \ge 0$, and $p^k \divides N$, then $p^k \le 2n$. We'll show instead that if $p^k > 2n$, then $p^k \ndivides N$. We have \begin{align*} \padic_p(N) &= \padic_p((2n)!) - 2\padic_p(n!) \\ &= \sum_{i = 1}^\infty \left( \left\lfloor \frac{2n}{p^i} \right\rfloor - 2 \left\lfloor \frac{n}{p^2} \right\rfloor \right) \end{align*} If $p^k > 2n$, then this equals \[ \sum_{i = 1}^{k - 1} \left( \left\lfloor \frac{2n}{p^i} \right\rfloor - 2 \left\lfloor \frac{n}{p^i} \right\rfloor \right) \] (since if $i \ge k$ then $p^i > 2n$ $\implies$ $\frac{2n}{p_i} < 1$, so $\left\lfloor \frac{2n}{p^i} \right\rfloor = 0$). If $x \in \RR$, $x > 0$, then $\left\lfloor 2x \right\rfloor - 2 \left\lfloor x \right\rfloor \in \{0, 1\}$. Why? If $x = m + \alpha$, $m \in \ZZ$, $\alpha \in [0, 1)$, then $\left\lfloor x \right\rfloor = m$, $2x = 2m + 2\alpha$, so \[ \left\lfloor 2x \right\rfloor = \begin{cases} 2m & \alpha \in \left[0, \half\right) \\ 2m + 1 & \alpha \in \left[\half, 1\right) \end{cases} \] So \[ \left\lfloor 2x \right\rfloor - 2 \left\lfloor x \right\rfloor = \begin{cases} 0 & \alpha \in \left[0, \half \right) \\ 1 & \alpha \in \left[\half, 1\right) \end{cases} \] So \[ \padic_p(N) = \sum_{i = 1}^{k - 1} \left( \left\lfloor \frac{2n}{p^i} \right\rfloor - 2 \left\lfloor \frac{n}{p^i} \right\rfloor\right) \le k - 1 .\] So $p^k \ndivides N$. \qedhere \end{enumerate} \end{proof} \begin{theorem}[Chebyshev's Theorem] \label{chebyshevs_thm} There exist $c_1, c_2 > 0$ such that $\forall x > 4$, \[ c_1 \frac{x}{\log x} \le \pc(x) \le c_2 \frac{x}{\log x} .\] \end{theorem} \vspace{-1em} The proof will show we can take $c_1 = \frac{\log 2}{2}$, $c_2 = 6\log 2$. \begin{proof} Strategy: prove bounds that work for certain integer values of $x$, and then interpolate to all $x > 4$. We first prove the upper bound. \textbf{Claim:} If $k \ge 1$, $\pc(2^k) \le \frac{3 \times 2^k}{k}$. Note that if $n \in \NN$, then $\pc(2n) \le n$ (as \glspl{prime} are among $2, 3, 5, 6, \ldots$). We have \[ \frac{2^k}{k} = 2^{k - 1} \le \frac{3 \times 2^k}{k} \iff k \le 6 .\] So the claim holds if $k \le 6$. Now suppose the claim holds for some $k \ge 5$, and let $n = 2^k$, $N = {2n \choose n}$. Then \begin{align*} 2^{2n} &> N \\ &&\text{(\cref{chebyshev_lemmas}(1))} \\ &\ge \prod_{\substack{n < p \le 2n \\ \text{$p$ \gls{prime}}}} p &&\text{(\cref{chebyshev_lemmas}(2))} \\ &\ge \prod_{\substack{n < p \le 2n \\ \text{$p$ \gls{prime}}}} n &&\text{($p \ge n$)} \\ &= n^{\pc(2n) - \pc(n)} \end{align*} So \[ \pc(2n) - \pc(n) = \pc(2^{k + 1}) - \pc(2^k) \le \frac{\log 2^{2n}}{\log n} = \frac{2n \log 2}{\log 2^k} = \frac{2^{k + 1}}{k} .\] Rearrange: \[ \pc(2^k + 1) \le \pc(2^k) + \frac{2^{k + 1}}{k} \le \frac{3 \times 2^k}{k} + \frac{2^{k + 1}}{k} = \frac{5 \cdot 2^k}{k} \] We have \[ \frac{5 \times 2^k}{k} \le \frac{3 \times 2^{k + 1}}{k + 1} \iff 5(k + 1) \le 6k \iff k \ge 5 \] This proves the claim. Rest of proof next time. \renewcommand\qed{} \end{proof}