%! TEX root = NT.tex % vim: tw=50 % 08/11/2023 10AM \gls{d_series} are interesting when $a_n$ is an arithmetically interesting sequence, and then $\sum_{n = 1}^\infty a_n n^{-s}$ is a kind of generating function. \begin{flashcard}[Dirichlet-convolution-defn] \begin{definition*}[Dirichlet convolution] \glsnoundefn{d_conv}{convolution}{convolutions} \glsnoundefn[d_conv]{dirich_conv}{convolution}{convolutions} \glssymboldefn{d_conv}{$*$}{$*$} \cloze{ The \emph{Dirichlet convolution} of functions $f, g : \NN \to \CC$ is defined by \[ (f * g)(n) = \sum_{d \divides n} f(d) g \left( \frac{n}{d} \right) .\] This satisfies the property that \[ \left( \sum_{n = 1}^\infty f(n)n^{-s} \right) \left( \sum_{m = 1}^\infty g(m) m^{-s} \right) = \sum_{n, m \ge 1} g(n) g(m) (nm)^{-s} = \sum_{n = 1}^\infty h(n) n^{-s} .\] } \end{definition*} \end{flashcard} \begin{lemma} Let $f, g, h : \NN \to \CC$. Then: \begin{enumerate}[(1)] \item $f \conv g = g \conv f$ as functions $\NN \to \CC$. \item $(f \conv g) \conv h = f \conv (g \conv h)$. \item If $f, g$ are mutliplicative (i.e. $f(mn) = f(m)f(n)$, $\gcdbrack(m, n) = 1$) then $f \conv g$ is also multiplicative. \end{enumerate} \end{lemma} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item \[ (f \conv g)(n) = \sum_{d \divides} f(d) g \left( \frac{n}{d} \right) = \sum_{ \substack{a, b \in \NN \\ ab = n}} f(a) g(b) .\] This is symmetric in $f$ and $g$. \item \begin{align*} ((f \conv g) \conv h)(n) &= \sum_{d_1 d_2 = n} (f \conv g)(d_1) h(d_2) \\ &= \sum_{d_1 d_2 = n} \sum_{e_1 e_2 = d_1} f(e_1)g(e_2)h(d_2) \\ &= \sum_{\substack{a, b, c \in \NN \\ abc = n}} f(a) g(b) h(c) \end{align*} A computation shows this is equal to $(f \conv (g \conv h))(n)$. \item Let $m, n \in \NN$, $\gcdbrack(m, n) = 1$. Then \begin{align*} (f \conv g)(mn) &= \sum_{d \divides mn} f(d) g \left( \frac{mn}{d} \right) \\ &= \sum_{\substack{d_1 \divides m \\ d_2 \divides n}} f(d_1 d_2) g \left( \frac{mn}{d_1 d_2} \right) \\ &= \sum_{\substack{d_1 \divides m \\ d_2 \divides n}} f(d_1) f(d_2) g \left( \frac{m}{d_1} \right) g \left( \frac{m}{d_2} \right) \\ &= \left( \sum_{d_1 \divides m} f(d_1) g \left( \frac{m}{d_1} \right) \right) \left( \sum_{d_2 \divides n} f(d_2) g \left( \frac{n}{d_2} \right) \right) \\ &= (f \conv g)(m) (f \conv g)(n) \qedhere \end{align*} \end{enumerate} \end{proof} \begin{example*} \begin{align*} \zetafn(s - 1) \zetafn(s) &= \sum_{n = 1}^\infty n^{1 - s} \sum_{m = 1}^\infty m^{-s} \\ &= \sum_{n = 1}^\infty n \cdot n^{-s} \sum_{m = 1}^\infty m^{-s} \\ &= \sum_{n = 1}^\infty (f \conv g)(n)n^{-s} \\ &= \sum_{n = 1}^\infty \sigmafactorsum(n) n^{-s} \end{align*} where we use $f(n) = n$, $g(n) = 1$. Then $(f \conv g)(n) = \sum_{d \divides n} d = \sigmafactorsum(n)$. \end{example*} \begin{flashcard}[mobius-function-defn] \begin{definition}[M\"obius function] \glssymboldefn{mobius_function}{$\mu$}{$\mu$} \glsnoundefn{mobius_function}{M\"obius function}{N/A} \cloze{The M\"obius function $\mu : \NN \to \CC$ is defined by \[ \mu(n) = \begin{cases} 0 & \text{$n$ is not squarefree} \\ (-1)^k & \text{$n = p_1 \cdots p_k$, $p_i$ distinct primes} \end{cases} \] In particular, $\mu(1) = (-1)^0 = 1$.} \end{definition} \end{flashcard} \begin{flashcard}[mobius-one-delta-lemma] \begin{lemma} Let $\allone : \NN \to \CC$ be $\allone(n) = 1 ~\forall n \in \NN$, and $\delta : \NN \to \CC$ be $\delta(n) = 1$ if $n = 1$, $\delta(n) = 0$ if $n > 1$. Then: \begin{enumerate}[(1)] \item $\delta$ is an identity for \gls{dirich_conv}: $\delta \conv f = f$, $\forall f : \NN \to \CC$. \item TODO \end{enumerate} \end{lemma} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item TODO \item \cloze{TODO So it's enough to show $(\mobius \conv \allone)(p^k) = \ddelta(p^k)$ if $p$ is prime, $k \ge 0$. For $k = 0$: \[ (\mobius \conv \allone)(p^k) = \sum_{d \divides 1} \mobius(d) = 1 \] For $k \ge 1$, \[ (\mobius \conv \allone)(p^k) = \sum_{i = 0}^k \mobius(p^i) = \mu(1) + \mu(p) + \cdots + \mu(p^k) = 1 - 1 + 0 \cdots + 0 = 0 = \ddelta(p^k). \qedhere \]} \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[mobius-inversion-formula] \begin{proposition}[M\"obius inversion formula] \label{mob_inversion_formula} \cloze{ Suppose $f, g : \NN \to \CC$ are such that \[ f(n) = \sum_{d \divides n} g(d) \qquad \forall n \in \NN \] Then \[ g(n) = \sum_{d \divides n} \mobius(d) f \left( \frac{n}{d} \right) \qquad \forall n \in \NN \] } \end{proposition} \begin{proof} \cloze{By definition, we have $f = g \conv \allone$, and we need to show $g = \mobius \conv f$. But $\mobius \conv f = \mobius \conv g \conv \allone = g \conv (\allone \conv \mobius) = g \conv \ddelta = g$.} \end{proof} \end{flashcard} \begin{flashcard}[Mongoldt-function-defn] \begin{definition}[von Mongoldt function] \glssymboldefn{von_mongoldt}{$\Lambda$}{$\Lambda$} \cloze{ The von Mongoldt function $\Lambda : \NN \to \CC$ is defined by \[ \Lambda(n) = \begin{cases} 0 & \text{if $n$ is not a \gls{prime} power} \\ \log p & \text{if $n = p^k$, $p$ \gls{prime}, $k\ge 1$} \end{cases} \] ``Weighted indicator function'' of prime powers. } \end{definition} \end{flashcard} \vspace{-1em} The Chebyshev function $\psi : [1, \infty) \to \CC$ is defined by $\psi(x) = \sum_{1 \le n \le x} \vonmongoldt(n) = \sum_{p^k \le x} \log p$. One can show using elementary methods that \[ \psi(x) \sim \pc(x) \log (x) \] where $\pc(x)$ is the prime counting function as usual. Recall \cref{pnt} (\nameref{pnt}) says that $\pc(x) \sim \frac{x}{\log x}$ as $x \to \infty$. This is equivalent to saying that \[ \psi(x) \sim x \] as $x \to \infty$ (i.e. $\lim_{x \to \infty} \frac{\psi(x)}{x} = 1$). \begin{theorem} If $s \in \CC$, $\sigmareal = \Re(s) > 1$, then \[ \frac{-\zetafn'(s)}{\zetafn(s)} = \sum_{n = 1}^\infty \vonmongoldt(n) n^{-s} \] \end{theorem} \begin{proof} Both $\LHS$ and $\RHS$ are holomorphic, so it's enough to show equality when $s = \sigmareal$ is real (identity principle for holomorphic functions). \begin{align*} -\frac{\zetafn'(s)}{\zetafn(s)} &= -\frac{\dd}{\dd \sigmareal} \log \zetafn(\sigmareal) \\ &= -\frac{\dd}{\dd \sigmareal} \log \prod_p (1 - p^{-\sigmareal})^{-1} \\ &= -\frac{\dd}{\dd \sigmareal} \sum_p -\log(1 - p^{-\sigmareal}) \\ &= -\frac{\dd}{\dd \sigmareal} \sum_p \sum_{k \ge 1} \frac{p^{-k\sigmareal}}{k} \end{align*} Using $-\log(1 - x) = \sum_{k \ge 1} \frac{x^k}{k}$, $|x| < 1$. We can interchange order of differentiation and summation, using uniform convergence. So \begin{align*} -\frac{\zetafn'(\sigmareal)}{\zetafn(\sigmareal)} \\ &= -\sum_{\substack{\text{$p$ \gls{prime}} \\ k \ge 1}} \frac{\dd}{\dd \sigmareal} \frac{p^{-k\sigmareal}}{k} \\ &= -\sum_p \frac{\dd}{\dd \sigmareal} \frac{\exp(-k\sigmareal \log p)}{k} \\ &= \sum_{\substack{p \\ k \ge 1}} (\log p) p^{-k\sigmareal} \\ &= \sum_{n = 1}^\infty \vonmongoldt(n) n^{-\sigmareal} \end{align*} \end{proof} What happens next? If $\zetafn(s)$ has a zero of order $k$ at $s = s_0$, then $-\frac{\zetafn'(s)}{\zetafn(s)}$ will have a simple pole at $s = s_0$ of residue $-k$. You can consider a contour integral of $-\frac{\zetafn'(s)}{\zetafn(s)} \frac{x^s}{x}$ and evaluate using Cauchy's residue theorem to prove a formula \[ \psi(x) = x - \sum_\rho \frac{x^\rho}{\rho} - \frac{\zetafn'(0)}{\zetafn(0)} \] valid when $x > 2$ is not a prime power, where the sum $\sum_\rho$ is over zeroes $\rho$ of the Riemann $\zetafn$-function. ``Riemann's explicit relation''. We now turn to elementary techniques to study the distribution of \glspl{prime}. Main goal: \nameref{chebyshevs_thm}: \[ c_1 \frac{x}{\log x} \le \pc(x) \le c_2 \frac{x}{\log x} \] Main tool: \gls{prime} factorisation of binomial coefficients ${2n \choose n}$, $n \in \NN$.