%! TEX root = NT.tex % vim: tw=50 % 03/11/2023 10AM Which integers are \glsref[bqf_rep]{represented} by $f(x, y) = x^2 + xy + 2y^2$? If $m, n \in \ZZ$, not both $0$, then $m = dm_1$, $n = dn_1$, $d = \gcd(m,n)$, and then $\gcdbrack(m_1, n_1) = 1$. So \[ f(m, n) = f(dm_1, dn_1) = d^2 f(m_1, n_1) \] where $f(m_1, n_1)$ is properly represented by $f$. So $N \in \NN$ is \glsref[bqf_rep]{represented} by $f$ $\iff$ $N = d^2 N_1$, $d, N_1 \in \NN$, $N_1$ is \gls{prop_rep} by $f$ $\iff$ if $p \divides N$ and $p \equiv \text{$3$, $5$ or $6$} \pmod{7}$, then $p$ divides $N$ an even number of times (i.e. $e_p$ is even). How general is this? Whenever $\clsnum(d) = 1$, there's a unique \gls{red_pdbqf} \gls{pdbqf} of \gls{disc_bqf} $d$, and it \glsref[bqf_rep]{represents} $N$ properly $\iff$ $X^2 \equiv d \pmod{4N}$ is \glsref[eq_sol]{solvable}. We can do a similar computation to characterise the integers \glsref[bqf_rep]{represented} by this \gls{red_pdbqf} \gls{pdbqf} in terms of congruence conditions on \gls{prime} divisors. If $\clsnum(d) > 1$, then we only have a criterion for $N$ to be \glsref[bqf_rep]{represented} by some form of \gls{disc_bqf} $d$. In fact, there do exist \glspl{pdbqf} $f(x, y)$ such that the set of \gls{prime} numbers $p$ \glsref[bqf_rep]{represented} by $f$ is not described by congruence conditions. \begin{example*} $f(x, y) = x^2 + 23y^2$ (this is studied in Part III Algebraic Numer Theory). \end{example*} \vspace{-1em} The behaviour of $\clsnum(d)$ as $|d| \to \infty$ is well-studied. \begin{itemize} \item It's known that $\clsnum(d) \to \infty$ as $d \to -\infty$ (Siegel, Heilbrown, 1934). \item We know $\clsnum(d) = 1$ if and only if \[ d = -3, -4, -7, -8, -11, -19, -43, -67, -163 \] % or % \[ d = -12, -16, -27, -28 \] (Barker, Stark, 1967). \end{itemize} In Part II Number Fields, we define the ideal class group of a number field $K$. You can show that if $K = \QQ(\sqrt{d})$, $d < 0$, then there's a bijection between \[ \{\text{\glsref[equiv_bqf]{equivalence classes} of \gls{pdbqf} of \gls{disc_bqf} $D$}\} \leftrightarrow \{\text{Ideal class group of $K$.}\} \] $D = \text{discriminant of $K$} = d$, if $d \neq k^2 d$, $k \in \NN$, $d_1$ a discriminant. \newpage \section{Distribution of prime numbers} We know that there are infinitely many \glspl{prime}. We'd like to know: what's the probability that a $50$-digit number if \gls{prime}? \begin{flashcard}[pnt-thm] \begin{theorem}[Prime Number Theorem] \label{pnt} \glssymboldefn{prime_counting}{$\pi$}{$\pi$} \cloze{ For $X \ge 1$, define $\pc(x) = \#\{\text{$p$ \gls{prime}} \st p \le x\}$. Then \[ \pc(x) \sim \frac{x}{\log x} \] as $x \to \infty$. } \end{theorem} \end{flashcard} \vspace{-1em} By definition, we say that $f \sim g$ if $f, g$ are real-valued functions such that \[ \lim_{x \to \infty} \frac{f(x)}{g(x)} = 1 \] So \nameref{pnt} says \[ \lim_{x \to \infty} \frac{\pc(x)}{x / \log(x)} = 1 .\] ($\log x$ is logarithm to the base $e$). It's easy to show that $\frac{x}{\log x} \sim \li(x)$, where \[ \li(x) \defeq \int_{t = 1}^x \frac{\dd t}{\log t} ,\] and in fact $\li(x)$ is a better approximation to $\pc(x)$ for large values of $x$. So \nameref{pnt} is equivalent to $\pc(x) \sim \li(x)$ as $x \to \infty$. This says that the density of \glspl{prime} close to $x$ is about $\frac{1}{\log(x)}$. So we expect that the probability that a random $20$-digit number is \gls{prime} to be about \[ \frac{1}{\log(5 \times 10^{19})} = 0.0220\ldots \] The actual probability is \[ \frac{\pc(10^{20}) - \pc(10^{19})}{10^{20} - 10^{19}} = 0.0220\ldots \] Nobody has yet computed $\pc(10^{50})$. There are many variants of the \nameref{pnt}. \begin{theorem*}[Dirichlet's Theorem on Primes in Arithmetic Progression] Take $a, N \in \NN$, $N > 1$, $\gcdbrack(a, N) = 1$. Then there are infinitely many \glspl{prime} $p$ such that $p \equiv a \pmod{N}$. \end{theorem*} \begin{theorem} \label{pnt_modulo} \glssymboldefn{prime_counting_modulo}{$\pi$}{$\pi$} Let \[ \pcmod(a, N, x) = \#\{\text{$p$ \gls{prime}} \st p \le x, p \equiv a \pmod{N}\} \] Then if $a, N \in \NN$, $N > 1$ and $\gcdbrack(a, N) = 1$, then \[ \pcmod(a, N, x) \sim \frac{1}{\totient(N)} \frac{x}{\log x} \] as $x \to \infty$. \end{theorem} \begin{corollary*} As $x \to \infty$, with appropriate conditions on $a$ and $N$, \[ \frac{\pcmod(a, N, x)}{\pcmod(x)} \to \frac{1}{\totient(x)} .\] \end{corollary*} \vspace{-1em} ``A randomly chosen prime lies in any possible congruence class \gls{modulo} $N$ with probability $\frac{1}{\totient(N)}$.'' The proofs of these theorems are beyond the scope of this course. We will: \begin{itemize} \item Inrtoduce Riemann $\zeta$-function and Dirichlet series (these are the main tools in the proofs of \cref{pnt} and \cref{pnt_modulo}). \item Use elementary techniques to prove \nameref{chebyshevs_thm}: \[ \exists c_1, c_2 > 0 ~\forall x \ge 2, \qquad c_1 \frac{x}{\log x} \le \pc(x) \le c_2 \frac{x}{\log x} \] \end{itemize} \begin{lemma} If $x \in \NN$, $x > 2$, then \[ \pc(x) \ge \frac{\log x}{2\log 2} .\] \end{lemma} \begin{proof} Let $p_1, \ldots, p_k$ be the \glspl{prime} $\le x$. So $k = \pc(x)$. If $1 \le n \le x$, write $n = d^2 p_1^{\eps_1} \cdots p_k^{\eps_k}$, $d \in \NN$, $\eps_i \in \{0, 1\}$. Each such $n$ has a unique expression in this form. We have $d \le \sqrt{x}$. So \begin{align*} x = \#\{n \in \ZZ \st 1 \le n \le x\} &\le \sqrt{x} 2^{\pc(x)} \\ \implies \sqrt{x} &\le 2^{\pc(x)} \\ \implies \half \log x &\le \pc(x) \log 2 \end{align*} \end{proof} \begin{proposition} \phantom{} \begin{enumerate}[(i)] \item $\sum_{\text{$p$ \gls{prime}}} \frac{1}{p}$ diverges. \item $\prod_{\text{$p$ \gls{prime}}} \left( 1 - \frac{1}{p} \right)^{-1}$ diverges. \end{enumerate} \end{proposition} \begin{proof}[Proof of (2) $\iff$ (1)] Need to show \[ \prod_{p \le x} \left( 1 - \frac{1}{p} \right)^{-1} \to \infty \] as $x \to \infty$. The logarithm of this is (recall that the Taylor series for $-\log(1 - x)$ is absolutely convergent on $|x| < 1$, and $\frac{1}{p} < 1$): \begin{align*} \log \prod_{p \le x} \left( 1 - \frac{1}{p} \right)^{-1} &= \sum_{p \le x} -\log \left( 1 - \frac{1}{p} \right) \\ &= \sum_{p \le x} \sum_{k \ge 1} \frac{p^{-k}}{k} \\ &= \sum_{p \le x} \frac{1}{p} + \sum_{p \le x} \sum_{k \ge 2} \frac{p^{-k}}{k} \\ \end{align*} Claim: $\sum_{p \le x} \sum_{k \ge 2} \frac{p^{-k}}{k}$ converges as $x \to \infty$. Enough to show these sums are bounded. \begin{align*} \sum_{p \le x} \sum_{k \ge 2} \frac{p^{-k}}{k} &\le \sum_{p \le x} \sum_{k \ge 2} p^{-k} \\ &= \sum_{p \le x} \frac{p^{-2}}{1 - \frac{1}{p}} \\ &= \sum_{p \le x} \frac{1}{p(p - 1)} \\ &\le \sum_{n \ge 1} \frac{1}{n^2} \\ &< \infty \end{align*} So $\log \prod_{p \le x} \left( 1 - \frac{1}{p} \right)^{-1} = \sum_{p \le x} \frac{1}{p} + f(x)$ where $f(x)$ converges as $x \to \infty$. So (1) $\iff$ (2). \end{proof}