%! TEX root = NT.tex % vim: tw=50 % 01/11/2023 10AM \begin{flashcard}[prop-rep-pdbqf-iff-lemma] \begin{lemma} \label{prop_rep_pdbqf_iff_lemma} Let $f(x, y)$ be a \gls{pdbqf}, $N \in \NN$. Then $f$ \glspl{prop_rep} $N$ if and only if \cloze{$f$ is \gls{equiv_bqf} to a \glsref[bqf]{form} $g = \bqfb(a, b, c)$ where $a = N$.} \end{lemma} \begin{proof} \phantom{} \begin{enumerate}[$\Rightarrow$] \item[$\Leftarrow$] \cloze{\Gls{equiv_bqf} \glsref[bqf]{forms} \gls{prop_rep} the same integers. Since $g(1, 0) = N$, $f$ \glspl{prop_rep} $N$.} \item[$\Rightarrow$] \cloze{Suppose $A \in \SL_2(\ZZ)$ such that $g(x, y) = f((x, y)A) = \bqfb(a, b, c)$. Then $g(1, 0) = a$. By assumption, $\exists m, n \in \ZZ$ with $\gcd(m, n) = 1$, $f(m, n) = N$. $a = g(1, 0) = f((1, 0) A)$. If we can choose $A$ so that $(1, 0) = (m, n)$, then we will have $a = g(1, 0) = f(m, n) = N$. Since $\gcd(m, n) = 1$, $\exists r, s \in \ZZ$ such that $rm + sn = 1$. If \[ A = \begin{pmatrix} m & n \\ -s & r \end{pmatrix} ,\] then $\det(A) = 1$, so $A \in \SL_2(\ZZ)$, and $(1, 0) A = (m, n)$.} \qedhere \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[disc-prop-rep-iff-thm] \begin{theorem} \label{disc_prop_rep_iff_thm} Let $d \in \ZZ$, $d < 0$, $d \equiv 0 \text{ or } 1 \pmod{4}$. Let $N \in \NN$. Then the following are equivalent: \begin{enumerate}[(i)] \item \cloze{$N$ is \gls{prop_rep} by some \gls{pdbqf} of \gls{disc_bqf} $d$.} \item \cloze{The congruence $X^2 \equiv d \pmod{4N}$ has a \gls{eq_sol}.} \end{enumerate} \end{theorem} \begin{proof} \phantom{} \begin{enumerate}[(1) $\implies$ (2)] \item[(1) $\implies$ (2)] \cloze{By \cref{prop_rep_pdbqf_iff_lemma}, (1) holds if and only if $\exists$ \gls{pdbqf} $\bqfb(N, b, c)$ of \gls{disc_bqf} $d$. Then $d = b^2 - 4Nc$ so $b$ is a \gls{eq_sol} to $X^2 \equiv d \pmod{4N}$.} \item[(2) $\implies$ (1)] \cloze{Suppose there is a \gls{eq_sol} $b \in \ZZ$. Then $b^2 \equiv d \pmod{4N}$, so there exists $c \in \ZZ$ such that $b^2 = d + 4Nc$. Then $f(x, y) = \bqfb(N, b, c)$ has \gls{disc_bqf} $b^2 - 4Nc = d$. So $f$ is a \gls{pdbqf} of \gls{disc_bqf} $d$ which \glspl{prop_rep} $N$.} \end{enumerate} \end{proof} \end{flashcard} \begin{example*} $f(x, y) = x^2 + xy + 2y^2$, a \gls{pdbqf} of \gls{disc_bqf} $d = -7$. Which integers are \gls{bqf_rep} by $f$? First decide which $N \in \NN$ are \gls{prop_rep} by $f(x, y)$. Claim: $\clsnum(-7) = 1$. If $\bqfb(a, b, c)$ is a \gls{red_pdbqf} \glsref[bqf]{form} of \gls{disc_bqf} $-7$, then $|b| \le a \le \sqrt{7/3} < 2$ so $|b| \le a \le 1$. Also, $b$ is odd. So $a = 1$, $b = 1$, $c= 2$ and $\bqfb(a, b, c) = \bqfb(1, 1, 2)$. By \cref{disc_prop_rep_iff_thm}, $N$ is \gls{prop_rep} by some form of \gls{disc_bqf} $-7$ if and only if $X^2 \equiv -7 \pmod{4N}$ has a \gls{eq_sol}. Hence $N$ is \gls{prop_rep} by $f(x, y)$ if and only if $X^2 \equiv -7 \pmod{4N}$ has a \gls{eq_sol}. Let's analyse the congruence condition $X^2 \equiv -7 \pmod{4N}$ first when $N = p$ \gls{prime}. If $N = p = 2$: want $X^2 \equiv -7 \equiv 1 \pmod{8}$ to have a \gls{eq_sol} (which it does). If $p$ is odd: by \nameref{CRT}, want the two congruences \[ \begin{cases} X^2 \equiv -7 \equiv 1 \pmod{4} \\ X^2 \equiv -7 \equiv \pmod{p} \end{cases} \] to both be solvable. If $p = 7$, this is solvable. If $p \neq 2, 7$, this is solvable \[ \iff \legendre{-7}{p} = 1 \stackrel{\text{QR}}{\iff} \legendre{p}{7} = 1 \iff p \equiv 1, 2, \text{ or } 4 \pmod{7} .\] So a \gls{prime} number $p$ is \gls{prop_reped} by $f(x, y)$ $\iff p \equiv 0, 1, 2 \text{ or } 4 \pmod{7}$. Now suppose $N$ is not necessarily \gls{prime}, and write $N = \prod_p p^{e_p}$, $p$ \gls{prime}, $e_p \ge 0$. Then $N$ is \gls{prop_reped} by $f$ $\iff$ $X^2 \equiv -7 \pmod{4N}$ has a solution \[ \stackrel{\text{\nameref{CRT}}}{\iff} \begin{cases} X^2 \equiv -7 \pmod{2^{e_2 + 2}} \\ X^2 \equiv -7 \pmod{p^{e_p}} & \text{$p$ odd} \end{cases} \] are all solvable. \end{example*} \begin{lemma} Let $a \in \ZZ$. Then \begin{enumerate}[(1)] \item If $p$ is an odd \gls{prime} and $\legendre{a}{p} = 1$, then the congruence $X^2 \equiv a \pmod{p^k}$ is solvable $\forall k \ge 1$. \item If $a \equiv 1 \pmod{8}$, then $X^2 \equiv a \pmod{2^k}$ is solvable $\forall k \ge 1$. \end{enumerate} \end{lemma} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item Use induction on $k \ge 1$, $k = 1$ holding by assumption. Suppose $\exists x, y \in \ZZ$ such that $x^2 = a + yp^k$. Consider for $z \in \ZZ$ \[ (x + p^k z)^2 = x^2 + 2p^k xz + p^{2k} z^2 \equiv a + p^k(y + 2xz) \pmod{p^{k + 1}} \] This is congruend to $a \pmod{p^{k + 1}}$ $\iff$ $y \equiv -2 xz \pmod{p}$. Since $p$ is odd, $p \nmid a \implies p \nmid x$, so $\gcdbrack(2x, p) = 1$, so we can find $z \in \ZZ$ such that $-2xz \equiv y \pmod{p}$. \item We show $X^2 \equiv a \pmod{2^k}$ has a \gls{eq_sol} for all $k \ge 3$ by induction on $k \ge 3$. $k = 3$ holds by assumption. Suppose $\exists x, y \in \ZZ$ such that $x^2 = a + 2^k y$, $k \ge 3$. If $y$ is even, then $x^2 \equiv a \pmod{2^{k + 1}}$. So assume $y$ is odd. Then \[ (x + 2^{k - 1})^2 = x^2 + 2^k x + 2^{2k - 2} = a + a^k(x + y) + 2^{2k - 2} \] so $x + y$ is even (since both $x$ and $y$ are odd). So \[ (x + 2^{k - 1})^2 \equiv a + 2^{2k - 2} \pmod{2^{k + 1}} \] This is congruent to $a \pmod{2^{k + 1}}$ if and only if $2k -2 \ge k + 1$, which is true if and only if $k \ge 3$. \qedhere \end{enumerate} \end{proof} Conclusion: $N \in NN$ is \gls{prop_reped} by $x^2 + xy + 2y^2$ if and only if the congruences $X^2 \equiv -7 \pmod{2^{e_2 + 2}}$, $X^2 \equiv -7 \pmod{p^{e_p}}$ ($p$ odd, $e_p \ge 1$) are all solvable. The first is always solvable, so this is true: \begin{align*} &\iff \text{if $p \mid N$, $p \neq 2, 7$, then $p \equiv 1, 2 \text{ or } 4 \pmod{7}$ and } \\ &\phantom{\iff}~~\text{if $7 \mid N$, then $X^2 \equiv -7 \pmod{7^{e_7}}$ has a solution} \\ &\iff \text{if $p \mid N$, $p \neq 2, 7$, then $p \equiv 1, 2, \text{ or } 4 \pmod{7}$. If $7 \mid N$ then $7^2 \nmid N$} \end{align*}