%! TEX root = NT.tex % vim: tw=50 % 30/10/2023 10AM \begin{corollary} Let $d \in \ZZ$, $d < 0$, $d \equiv 0 \text{ or } 1 \pmod{4}$. Then the number of \glsref[equiv_bqf]{equivalence classes} of \gls{pdbqf} of \gls{disc_bqf} $d$ is finite. \end{corollary} \begin{proof} Every \gls{bqf_equiv_class} contains a reduced form. Therefore it is enough to show that there are finitely many \gls{red_pdbqf} $\bqfb(a, b, c)$ of $\disc$ $d$. If $\bqfb(a, b, c)$ is \gls{red_pdbqf}, then $|b| \le a \le \sqrt{\frac{|d|}{3}}$, so there are finitely many choices for $a$ and $b$. But we also know $c = \frac{b^2 - d}{4a}$, so $a$ and $b$ determine $c$. \end{proof} \begin{definition} \glsnoundefn{prop_rep}{properly represent}{properly represents} \glsadjdefn[prop_rep]{prop_reped}{properly represented}{integers} Let $f = \bqfb(a, b, c)$ be a \gls{bqform}, $N \in \ZZ$. We say $N$ is \emph{properly represented} by $f$ if $\exists m, n \in \ZZ$ with $f(m, n) = N$ with $\gcd(m, n) = 1$. \end{definition} \begin{note*} If $f, g$ are \gls{equiv_bqf}, then they \gls{prop_rep} the same integers. Why? By symmetry, enough to show that if $f$ \glspl{prop_rep} $N$, then so does $g$. Suppose $f(m, n) = N$, $\gcd(m, n) = 1$. Let $f(x, y) = g((x, y)A)$, \[ A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \SL_2(\ZZ) \] Then $f(m, n) = N = g((m, n)A) = g(\alpha m + \gamma n, \beta m + \delta n)$. We need to check $\gcd(\alpha m + \gamma n, \beta m + \delta n) = 1$. We have $\gcd(m, n) \divides \alpha m + \gamma n, \beta m + \delta n$, so $\gcd(m, n) \divides \gcd(\alpha m + \gamma n, \beta m + \delta n)$. Since $(\alpha m + \gamma n, \beta m + \delta n) = (m, n)A$, we have $(m ,n) = (\alpha m + \gamma n, \beta m + \delta n)A^{-1}$, $A^{-1} \in \SL_2(\ZZ)$. So the same argument gives $\gcd(\alpha m + \gamma n, \beta m + \delta n) \divides \gcd(m, n)$, so equality holds. So $g$ \glspl{prop_rep} $N$. \end{note*} \begin{flashcard}[red-pdbqf-smallest-nums] \begin{lemma} \label{pdbqf_values_lemma} Let $f = \bqfb(a, b, c)$ be a \gls{red_pdbqf} \gls{pdbqf}. Then \begin{enumerate}[(1)] \item \cloze{$a \le c \le a + c - |b|$.} \item \cloze{$f(1, 0) = a$, $f(0, 1) = c$, $\exists \eps \in \{\pm 1\}$ with $f(1, \eps) = a + c - |b|$.} \item \cloze{If $m, n \in \ZZ, \gcd(m, n) = 1$, and $(m, n) \neq \pm (1, 0)$ or $\pm (0, 1)$ then $f(m, n) \ge a + c - |b|$.} \end{enumerate} \cloze{Informally: the smallest $3$ \gls{prop_reped} values of $f$ are $a$, $c$, $a + c - |b|$.} \end{lemma} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item \cloze{Since $f$ is \gls{red_pdbqf}, $c \ge a \ge |b| \ge 0$. So $a - |b| \ge 0$, $c + a - |b| \ge c$.} \item \cloze{$f(x, y) = ax^2 + bxy + cy^2$ $\implies$ $f(1, 0) = a$, $f(0, 1) = c$, $f(1, \eps) = a + \eps + c$, $\eps \in \{\pm 1\}$. Choose $\eps$ so that $\eps b = -|b|$. Then $f(1, \eps) = a + c - |b|$.} \item \cloze{If $m, n \in \ZZ$, $\gcd(m, n) = 1$, and $(m, n) \neq \pm (1, 0)$ or $\pm (0, 1)$, then $m, n$ are both non-zero. First assume $|m| \ge |n| \ge 1$. Then $f(m, n) = am^2 + bmn + cn^2 \ge am^2 - |b| m^2 + cn^2 \ge (a - |b|)m^2 + cn^2$. Since $f$ is \gls{red_pdbqf}, $a - |b| \ge 0$. Then since $m^2, n^2 \ge 1$, $f(m, n) \ge a + c - |b|$. Next assume $|n| \ge |m| \ge 1$. Then \[ f(m, n) = am^2 + bmn + cn^2 \ge am^2 - |b|n^2 + cn^2 \ge am^2 + (c - |b|)n^2 \ge a + c - |b| \qedhere \]} \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[pdbqf-equiv-unique-red-thm] \begin{theorem} Every \gls{pdbqf} is \gls{equiv_bqf} to a unique \gls{red_pdbqf} form. \end{theorem} \begin{proof} \cloze{ Every \gls{pdbqf} is equivalent to some \gls{red_pdbqf} \glsref[bqf]{form}, so it's enough to show that if $f = \bqfb(a, b, c)$, $g = \bqfb(a', b', c')$ are \gls{equiv_bqf} \gls{red_pdbqf} \glsref[bqf]{forms}, then they're equal. We know that \glsref[equiv_bqf]{equivalent} \glsref[bqf]{forms} \gls{prop_rep} the same values, the same number of times. We know that the $3$ smallest values represented by $f$ are $a \le c \le a + c - |b|$, and the ones for $g$ are $a' \le c' \le a' + c' - |b'|$. So $a = a'$, $c = c'$, $a + c - |b| = a' + c' - |b'|$, so $|b| = |b'|$, $b' = \pm b$. Assume for contradiction that $b \neq b'$, then without loss of generality we can assume $b > 0$. So $f = (a, b, c)$, $g = (a, -b, c)$. Recall to say $f$ is \gls{red_pdbqf} means $c \ge a \ge |b|$, and if $c = a$ or $a = |b|$, then $b \ge 0$. We're assuming $b > 0$, and $g = \bqfb(a, -b, c)$ is also \gls{red_pdbqf}. Therefore we must have $c > a$, $a > b$, so $a < c < a + c - b$. Suppose $f(x, y) = g((x, y) A)$, $A \in \SL_2(\ZZ)$, \[ A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \] Then $a = f(1, 0) = g((1, 0) A) = g(\alpha, \beta)$ and $c = f(0, 1) = g(\gamma, \delta)$. We have $\gcd(\alpha, \beta) = 1$, $\gcd(\gamma, \delta) = 1$. By \cref{pdbqf_values_lemma}(3), we know that if $m, n \in \ZZ$, $\gcd(m, n) = 1$, $(m, n) \neq \pm (1, 0)$ or $\pm (0, 1)$, then $g(m, n) \ge a + c - |b| > c$. The only possibilities are $(\alpha, \beta) = \pm (1, 0)$, $\gamma, \delta) = \pm (0, 1)$. Hence \[ A = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \] Since $\det(A) = 1$, we must have both signs the same, so $A = \pm I_2$. Hence $g((x, y)A) = g(\pm (x, y)) = g(x, y)$ (since $g$ is homogeneous of degree 2). But $f(x, y) = g((x, y)A) = f(x, y)$, so $g(x, y) = f(x, y)$, contradicting our assumption that they were non-equal. } \end{proof} \end{flashcard} \begin{flashcard}[class-number-of-d-defn] \begin{definition} \glsnoundefn{cls_num}{class number}{class numbers} \glssymboldefn{cls_num}{$h$}{$h$} Let $d \in \ZZ$, $d < 0$, $d \equiv 0, 1 \pmod{4}$. Then we write \begin{align*} h(d) &= \cloze{\#\{\text{\glspl{bqf_equiv_class} of \gls{pdbqf} of \gls{disc_bqf} $d$}\}} \\ &= \cloze{\#\{\text{\gls{red_pdbqf} \glspl{pdbqf} of \gls{disc_bqf} $d$}\}} \end{align*} \cloze{``Class number of $d$''} \end{definition} \end{flashcard} \begin{example*} $\clsnum(-4) = 1$. Let's compute $\clsnum(-24)$ by enumerating \gls{red_pdbqf} \glsref[bqf]{forms}. TODO??? \end{example*}