%! TEX root = NT.tex % vim: tw=50 % 27/10/2023 10AM \begin{remark*} (This remark is unrelated to the current content). Given that we know that a \gls{prim_root} exists \gls{modulo} any \gls{prime}, one question we might ask is :``Can $a$ be a \gls{prim_root} for all sufficiently large \glspl{prime} $p$?'' The answer is no. One can prove this using the \gls{jac_symb} and Dirichlet's Theorem on \glspl{prime} in arithmetic progressions. \end{remark*} \vspace{-1em} We know: \begin{itemize} \item \Gls{equiv_bqf} \glsref[bqf]{forms} \gls{bqf_rep} the same integers ($N = f(m, n)$, $m, n \in \ZZ$). \item \Gls{equiv_bqf} \glsref[bqf]{forms} have the same \gls{disc_bqf}. \item \glsref[equiv_bqf]{Equivalence} is an equivalence relation. \end{itemize} We said that a \gls{bqf} $f(x, y)$ is \gls{posdef_bqf} if $\forall \mathbf{v} \in \RR^2 - 0$, $f(\mathbf{v}) > 0$. We showed that $f$ is \gls{posdef_bqf} $\iff$ $\disc f < 0$, $a > 0$, $\iff$ $\disc f < 0$, $c > 0$. \glsnoundefn{pdbqf}{PDBQF}{PDBQFs} We will now study equivalence classes of PDBQFs (\gls{posdef_bqf} \glspl{bqform}) of fixed \gls{disc_bqf} $d \in \ZZ$, $d \equiv 0, 1 \pmod{4}$, $d < 0$. The set of classes is always non-empty since \[ x^2 + \frac{d}{4} y^2 \qquad \text{or} \qquad x^2 + y + \frac{(1 - d)}{4} y^2 \] is a \gls{pdbqf} of \gls{disc_bqf} $d$. \textbf{Question:} If we are given a \gls{pdbqf} $(a, b, c)$, when can we find an \gls{equiv_bqf} one with smaller coefficients? \begin{example*} $f(x, y) = 10x^2 + 34xy + 29y^2 = \bqfb(10, 34, 29)$. We try to decrease the coefficients by acting by the \glspl{unimod_cv} \glssymboldefn{pdbqf_swap}{S}{S} \glssymboldefn{pdbqf_translate}{T}{T} \begin{flashcard}[reduction-matrices] \prompt{Matrices used to reduce a \gls{pdbqf}?} \[ T_{\pm} = \cloze{ \begin{pmatrix} 1 & 0 \\ \pm 1 & 1 \end{pmatrix}} \qquad \text{and} \qquad S = \cloze{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} } \] \end{flashcard} \begin{hiddenflashcard}[action-of-swap-translate-pdbqf] \prompt{What are the actions of $\swap$ and $\translate_{\pm}$ on a \gls{pdbqf} $(a, b, c)$?} \[ \translate_{\pm} : \bqfb(a, b, c) \to \cloze{\bqfb(a, b \pm 2a, c \pm b + a)}, \qquad \swap : \bqfb(a, b, c) \to \cloze{\bqfb(c, -b, a)} \] \end{hiddenflashcard} \textbf{Fact:} $S_1, T_{\pm}$ generate $\SL_2(\ZZ)$, so any \gls{unimod_cv} is a composite of these. If $g(x, y) = ax^2 + bxy + cy^2$, then for $\lambda = \pm 1$, \begin{align*} (\translate_\lambda g) (x, y) &= g((x, y)\translate_\lambda) \\ &= g(x + \lambda y, y) \\ &= a(x + \lambda y)^2 + b(x + \lambda y)y + cy^2 \\ &= ax^2 + (b + 2a\lambda) xy + (c + b\lambda + a\lambda^2)y^2 \end{align*} So $\translate_{\pm} : \bqfb(a, b, c) \mapsto \bqfb(a, b \pm 2a, c \pm b + a)$. So we can make \gls{unimod_cv} for $f$ as follows: \[ \bqfb(10, 34, 29) \stackrel[\translate_-]{}{\longrightarrow} \bqfb(10, 14, 5) \stackrel[\translate_-]{}{\longrightarrow} \bqfb(10, -6, 1) .\] We have \[ (\swap \cdot g) (x, y) = g \left( (x, y) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right) = g(-y, x) = cx^2 - bxy + ay^2 .\] If $a > c$, we can act by $\swap$ to reduce the size of $a$, just as when $|b| > 2a$ we could act by one of $\translate_+$, $\translate_-$ to reduce the size of $b$. \[ \bqfb(10, -6, 1) \stackrel[\swap]{}{\longrightarrow} \bqfb(1, 6, 10) \stackrel[\translate_-]{}{\longrightarrow} \bqfb(1, 4, 5) \stackrel[\translate_-]{}{\longrightarrow} \bqfb(1, 2, 2) \stackrel[\translate_-]{}{\longrightarrow} \bqfb(1, 0, 1) .\] We've proved that $f(x, y) = 10x^2 + 34xy + 29y^2$ is \gls{equiv_bqf} to $x^2 + y^2$. \end{example*} \begin{flashcard}[reduced-bqf-defn] \begin{definition}[Reduced \gls{pdbqf}] \glsadjdefn{red_pdbqf}{reduced}{\gls{pdbqf}} \cloze{ We say a \gls{pdbqf} $\bqfb(a, b, c)$ is \emph{reduced} if $-a < b \le a \le c$ and if $a = c$, then $b \ge 0$. } \end{definition} \end{flashcard} \begin{example*} $10x^2 + 34xy + 29y^2$ is not \gls{red_pdbqf}. $x^2 + y^2$ is \gls{red_pdbqf}. In general, if $\bqfb(a, b, c)$ is \gls{red_pdbqf}, then $c \ge a \ge |b| \ge 0$. \end{example*} \begin{flashcard}[pdbqf-equiv-reduced-prop] \begin{proposition} Any \gls{pdbqf} is \gls{equiv_bqf} to a \gls{red_pdbqf} one. \end{proposition} \begin{proof} \cloze{ Starting with $\bqfb(a, b, c)$ we act as follows. If $a > c$, then act by $\swap$ to replace $\bqfb(a, b, c)$ by $\bqfb(c, -b, a)$. This decreases $a$ and doesn't change $|b|$. If $a \le c$, but $|b| > a$, then act by one of $\translate_{\pm} : \bqfb(a, b, c) \to \bqfb(a, b \pm 2a, c \pm b + a)$ to decrease $|b|$ and leave $a$ the same. Repeat these steps until $a \le c$ and $|b| \le a$. The process must terminate as $a + |b|$ is a positive integer, but decreases by at least $1$ each time we act by $\pm 1$. The \glsref[bqf]{form} $\bqfb(a, b, c)$ is then \gls{red_pdbqf} except possibly if $c > a$ and $b = -a$ or if $a = c$ and $b < 0$. If $c > a$, $b = -a$, then $f = \bqfb(a, -a, c)$, $\translate_+ f = \bqfb(a, a, c)$ is \gls{red_pdbqf}. If $c = a$, $b < 0$, then $f = \bqfb(a, b, a)$, $\swap f = \bqfb(a, -b, a)$ is \gls{red_pdbqf}. } \end{proof} \end{flashcard} \begin{flashcard}[red-pdbqf-facts-lemma] \begin{lemma} If $\bqfb(a, b, c)$ is a \gls{red_pdbqf} \gls{pdbqf} then \cloze{$|b| \le a \le \sqrt{\frac{|d|}{3}}$, where $d = b^2 - 4ac$ and $b \equiv d \pmod{2}$.} \end{lemma} \begin{proof} \cloze{ $b^2 \equiv d \pmod{4} \implies b \equiv d \pmod{2}$. We have $c \ge a \ge |b| \ge 0$, $-d = 4ac - b^2 \ge 4ac - ac = 3ac \ge 3a^2$ \[ \implies a \le \sqrt{\frac{|d|}{3}} \qedhere \] } \end{proof} \end{flashcard} \begin{example*} Let's enumerate all \gls{red_pdbqf} \glsref[bqf]{forms} of \gls{disc_bqf} $-4$. If $\bqfb(a, b, c)$ is \gls{red_pdbqf}, $b^2 - 4ac = 4$, then $c \ge a \ge |b| \ge 0$, $b \equiv 0 \pmod{2}$, $a \le \sqrt{\frac{4}{3}}$ so $a = 1$. Since $b$ is even, $|b| \le 1$, we must have $b = 0$. Since $b^2 - 4ac = -4$, this fixes $c = 1$. So $x^2 + y^2$ is the only \gls{red_pdbqf} of \gls{disc_bqf} $-4$, so any \gls{pdbqf} of \gls{disc_bqf} $-4$ is \gls{equiv_bqf} to $x^2 + y^2$. \end{example*} \begin{corollary} If $p$ is an odd \gls{prime}, then $p$ is \gls{bqf_rep} $x^2 + y^2$ if and only if $p \equiv 1 \pmod{4}$. \end{corollary} \begin{proof} \phantom{} \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] Easy. \item[$\Leftarrow$] We know $p \equiv 1 \pmod{4}$ implies $\legendre{-1}{p} = 1$, so there exists $n \in \ZZ$ such that $n^2 \equiv -1 \pmod{p}$. So $\exists n, k \in \ZZ$ such that $n^2 = -1 + pk$. Then $-4 = 4n^2 - 4pk = \disc (px^2 + 2nxy + ky^2)$. So $f(x, y) = px^2 + 2nxy + ky^2$ is a \gls{pdbqf} of \gls{disc_bqf} $-4$, which \glsref[bqf_rep]{represents} $p$, as $f(1, 0) = p$. $f$ is equivalent to the \gls{red_pdbqf} \glsref[bqf]{form} $x^2 + y^2$. \glsref[equiv_bqf]{Equivalent} \glsref[bqf]{forms} \gls{bqf_rep} the same integers, so $x^2 + y^2$ \glsref[bqf_rep]{represents} $p$. \qedhere \end{enumerate} \end{proof}