%! TEX root = NT.tex % vim: tw=50 % 06/10/2023 10AM \setcounter{section}{-1} \section{Introduction} Number Theory: the study of $\ZZ = \{0, \pm 1, \pm 2, \ldots\}$. We're interested in questions about: \begin{itemize} \item Distribution of the \glspl{prime} $p \in \ZZ$. For example, \[ \pi(x) = \#\{\text{\glspl{prime} $p \le x$}\} \] How big is $\pi(x)$ as a function of $x$? It turns out that the Riemann hypothesis is equivalent to \[ \forall x \ge 3, |\pi(x) - \li(x)| \le \sqrt{x} \cdot \log x \] where $\li(x)$ is defined as \[ \li(x) = \int_{t = 2}^x \frac{1}{\log(t)} \dd t \] \item Diophantine equations. For example, Fermat's Last Theorem, which says that if $N \in \NN$< $N \ge 3$ then the equation \[ X^N + Y^N = Z^N \] has no solutions with $X, Y, Z \in \ZZ$ such that $XYZ = 0$. \item Computation. How can we quickly test whether a given $N \in \NN$ is \gls{prime}? If it's not \gls{prime}, how can you quickly find its \gls{prime_factorisation}? \end{itemize} We will address all of these themes using techniques coming from IA Numbers and Sets. \newpage \section{Primes Numbers and Congruences} \begin{flashcard}[division-algorithm] \begin{proposition}[Division algorithm] \label{division_algorithm} Let $a, b \in \ZZ$, $b > 0$. Then there exists a unique pair of $q, r \in \ZZ$ with $0 \le r < b$ such that $a = qb + R$. \end{proposition} \begin{proof} \cloze{ Let $S = \{a - qb \mid q \in \ZZ\}$. We know $S$ contains non-negative elements, so contains a least one, call it $r$. Then $a = qb + r$. If $r \ge b$, then $r - b \ge 0$, contradicting the minimality of $r \in S$. This shows existence of $q, r$. If $q', r'$ have the same property, then $qb + r = q'b + r' \implies r - r' = (q' - q)b$. Note that $-b < r - r' < b$. The only multiple of $b$ satisfying this is $0$, so $r = r'$ and $q = q'$. } \end{proof} \end{flashcard} \begin{notation*} \glssymboldefn{divides_mid}{divides}{divides} \glssymboldefn[divides_mid]{doesnt_divide_mid}{doesn't divide}{doesn't divide} If $r = 0$, then $a = qb$. In this case we say that $b$ divides and write $b \mid a$. Otherwise, $b \nmid a$. \end{notation*} \vspace{-1em} Let $a_1, \ldots, a_n \in \ZZ$ not all $0$. Let \[ I = \{\lambda_1 a_1 + \cdots + \lambda_n a_n \mid \lambda_i \in \ZZ\} \subset \ZZ \] If $x, y \in I$, $k, l \in \ZZ$, then $kx + ly \in I$ (this means that $I$ is an ideal of $\ZZ$). \begin{flashcard}[Z-is-PID] \begin{lemma} \label{Z_is_PID} There exists a unique $d \in \NN$ such that $I = d\ZZ = \{md \mid m \in \ZZ\}$. \end{lemma} \begin{proof} \cloze{ Let $d$ be the least positive element of $I$. Then if $a \in I$, we can write $a = qd + r$, $0 \le r < d$. Then $r = a - qd \in I$. By minimality of $d$, we must have $r = 0$, hence $a \in d\ZZ$, and $I \subset d\ZZ$. Clearly $I \supset d\ZZ$, hence $I = d\ZZ$. } \end{proof} \end{flashcard} Note that $a_1, \ldots, a_n \in I = d\ZZ$. Therefore, $d \divides a_i$ for all $i = 1, \ldots, n$. If $e \in \NN$, and $e \divides a_i \forall i$, then $e \divides d$. \glsnoundefn{gcd}{greatest common divisor}{greatest common divisors} \glssymboldefn{gcd}{gcd}{gcd} We call $d$ the greatest common divisor of $a_1, \ldots, a_n$ and write $d = (a_1, \ldots, a_n) = \gcd(a_1, \ldots, a_n)$. \begin{hiddenflashcard}[gcd-defn] \begin{definition*}[gcd] \cloze{ Given $a_1, \ldots, a_n \in \ZZ$, we define $\gcd(a_1, \ldots, a_n)$ to be the non-negative number $d$ such that \[ \{\lambda_1 a_1 + \cdots + \lambda_n a_n \mid \lambda_i \in \ZZ\} = d\ZZ .\] One can prove that: \begin{itemize} \item Such a $d$ \fcemph{always exists}. \item $d \mid a_i \forall i$. \item If $e \mid a_i \forall i$, then $e \mid d$. \end{itemize} } \end{definition*} \end{hiddenflashcard} \glsnoundefn{euclid_alg}{Euclid's algorithm}{N/A} We can use repeated application of the \hyperref[division_algorithm]{division algorithm} to find $\gcdbrack(a, b)$. This is \emph{Euclid's algorithm}. Suppose $a, b \in \NN$, $a > b$. Then \begin{align*} a &= q_1 b + r_1 &&(0 \le r_1 < b) \\ b &= q_2 r_1 + r_2 &&(0 \le r_2 < r_1) \\ r_1 &= q_3 r_2 + r_3 &&(0 \le r_3 < r_2) \\ &~~\vdots \\ r_k &= q_{k + 2} r_{k + 1} + r_{k + 2} &&(0 \le r_{k + 2} < r_{k + 1}) \\ \end{align*} \textbf{Claim:} we must eventually have $r_{k + 2} = 0$. Why? Because $b > r_1 > r_2 > \cdots > r_{k + 2} \ge 0$. Then $\gcdbrack(a, b) = r_{k + 1}$. Why? Because $\gcdbrack(a, b) = \gcdbrack(b_1, r_1) = \gcdbrack(r_1, r_2) = \cdots = \gcdbrack(r_{k + 1}, r_{k + 2}) = r_{k + 1}$. \begin{corollary} Let $a, b \in \ZZ$, not both $0$, $c \in \ZZ$. Then the following are equivalent: \begin{enumerate}[(1)] \item There exist $x, y \in \ZZ$ such that $xa + yb = c$. \item $\gcdbrack(a, b) \divides c$. \end{enumerate} \end{corollary} \vspace{-1em} This is a special case of \cref{Z_is_PID} with $n = 2$, $a_1 = a$, $a_2 = b$. In particular, we can always find $x, y \in \ZZ$ such that $xa + yb = \gcdbrack(a, b)$. We can use Euclid's algorithm to find such $x, y$. \begin{example*} $a = 34$, $b = 25$. \begin{align*} 34 &= 1 \times 25 + 9 \\ 25 &= 2 \times 9 + 7 \\ 9 &= 1 \times 7 + 2 \\ 7 &= 3 \times 2 + 1 \\ 2 &= 2 \times 1 \end{align*} Therefore $\gcdbrack(34, 25) = 1$. \begin{center} \begin{tabular}{c|cc} $r$ & $x$ & $y$ \\ \hline 34 & 1 & 0 \\ 25 & 0 & 1 \\ 9 & 1 & -1 \\ 7 & -2 & 3 \\ 2 & 3 & -4 \\ 1 & -11 & 15 \end{tabular} So $1 = -11 \times 34 + 15 \times 25$. \end{center} \end{example*} \begin{definition} \glsnoundefn{prime}{prime}{primes} We say $p \in \NN$ is prime if $p > 1$ and $\forall b \in \NN$, if $b \divides p$ then $b = 1$ or $b = p$. \end{definition} \begin{flashcard}[Euclids-lemma] \begin{lemma} \label{Euclids_lemma} Let $p$ be a \gls{prime} number, $a, b \in \ZZ$. Then if $p \divides (ab)$, then $p \divides a$ or $p \divides b$. \end{lemma} \begin{proof} \cloze{ Suppose $p \divides ab$, $p \ndivides a$. We must \emph{show} $p \divides b$. Consider $\gcdbrack(a, p)$. Then $\gcdbrack(a, p) \divides p$ so $\gcdbrack(a, p) = 1$ or $\gcdbrack(a, p) = p$. But $\gcdbrack(a, p) \divides a$ so $\gcdbrack(a, p) \neq p$, so $\gcdbrack(a, p) = 1$. Therefore there exist $x, y \in \ZZ$ such that $xa + yp = 1$. Multiply by $b$: $xab + ypb = b$, so $p \divides b$. } \end{proof} \end{flashcard} \begin{flashcard}[fundamental-theorem-of-arithmetic] \begin{theorem}[Fundamental Theorem of Arithmetic] \glsnoundefn{prime_factorisation}{prime factorisation}{prime factorisations} \label{FTA} Let $N \in \NN$. Then there is an expression $N = \prod_{i = 1}^k p_i^{a_i}$ where $p_i$'s are distinct \gls{prime} numbers, and $a_i \ge 1$ $\forall i = 1, \ldots, k$. Moreover, this expression is unique up to reordering the $p_i$'s. \end{theorem} \begin{proof} \cloze{ Existence: Induction on $N \ge 1$, noting that $N = 1$ has a unique expression as a product of \glspl{prime}. If $N > 1$, either $N$ is \gls{prime} (in which case we clearly have a representation as a product of \glspl{prime}), or $N = ab$, where $1 < a, b < N$ (and we can use this product to find a representation for $N$ as a product of \glspl{prime}). Uniqueness: Induction on $N \ge 1$, base case $N = 1$ already treated. If $N > 1$, and we have expressions $N = \prod_{i = 1}^k p_i^{a_i} = \prod_{j = 1}^l q_j^{b_j}$. Then $p_1 \divides N = \prod_{j = 1}^l q_j^{b_j}$. By \cref{Euclids_lemma}, $p_q \divides q_j$ for some $j$. Since $p_1 > 1$ and $q_j$ is \gls{prime}, $p_1 = q_j$. After relabelling, can assume $j = 1$. Then \[ \frac{N}{p_1} = p_1^{a_1 - 1} \prod_{i = 1}^k p_i^{a_i} = q_1^{b_1 - 1} \prod_{j = 2}^l q_j^{b_j} \] Now $N / p_1 < N$, so by induction, $k = l$ and $a_i = b_i$ for all $i$. } \end{proof} \end{flashcard}