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1 Normed Spaces and Linear Operators

Definition (Norm). Let X be a real or complex vector space. A norm on X is a
function ‖ • ‖ : X → R+ such that:

(i) ‖x‖ = 0 ⇐⇒ x = 0

(ii) ‖λx‖ = |λ|‖x‖ for all scalars λ and for all x ∈ X

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X (triangle inequality)

A normed space is a pair (X, ‖ • ‖) where X is a vector space and ‖ • ‖ is a norm on
X.

The norm induces a metric space structure on X.

Definition (Banach space). A normed space X is Banach if it is complete as a
metric / topological space.

Definition (Unit ball). It often helps to look at the unit ball of X, which is defined
by

B = B(X) = BX = {x ∈ X | ‖x‖ < 1}.

Remark. The unit ball is always convex.

Remark. Any set B ⊆ Rn which is closed, bounded, convex, symmetric about 0
and a neighbourhood of 0 defines a norm by:

‖x‖ = inf{t > 0 | x ∈ tB}.

B is the unit ball of that norm.

Theorem (Young’s inequality). Let 1 < p, q < ∞ with 1
p + 1

q = 1 and let a, b ≥ 0.
Then:

ab ≤ ap

p
+

bq

q
.
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Warning. Note that subspaces of normed vector spaces need not be closed topo-
logical subspaces!

Definition (Separable topological space). A topological space is separable if it has
a countable dense subset.

Theorem. Let X,Y be normed spaces and T : X → Y be linear. Then the following
are equivalent:

(i) T is continuous

(ii) T is continuous at 0

(iii) ∃k > 0 such that ‖Tx‖ ≤ k‖x‖ for all x ∈ X (this condition is called bounded).

Notation. We will write:

L(X,Y ) = {T : X → Y | T continuous and linear}

Note. The operator norm gives a norm on L(X,Y ), so L(X,Y ) is a normed vector
space.

Theorem. Let X,Y be normed spaces with Y Banach. Then L(X,Y ) is Banach.
In particular, X∗ is always Banach.

Theorem (Dual of lp). If 1 ≤ p < ∞, then the dual of lp is isometrically isomorphic
to lq, where q is the conjugate index.

We also have c∗0
∼= l1, but l∗∞ does not have a particularly nice expression.

Lemma.

(i) Every finite dimensional normed space is Banach.

(ii) Every finite-dimensional subspace of a normed space is closed (useful to know!).
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Proposition (Riesz’s Lemma). Let X be a normed space, and Y a closed subspace
of X with Y 6= X. Then:

(i) ∀ε > 0,∃x ∈ X with ‖x‖ = 1 and d(x, Y ) ≥ 1− ε

(ii) dimX < ∞ gives ∃x ∈ X with ‖x‖ = 1 and d(x, Y ) = 1

Corollary. X an infinite dimensional normed space implies that there exists xn in
X with ‖xn‖ = 1 and ‖xn − xm‖ ≥ 1 for all n 6= m. In particular, B(X) is not
compact.

Lemma. This is a fact about metric spaces: for a subset A of a metric space X,

A is totally bounded ⇐⇒ A is totally bounded.

In particular if X is complete, then

A is totally bounded ⇐⇒ A is compact.

1.1 Compact operators

Definition (Compact operator). Let X and Y be normed spaces. We say that
T : X → Y linear is compact if T (BX) is compact.

Remark. T compact implies T (BX) (totally) bounded, which implies that T is
continuous.

Remark. T : X → Y is compact if and only if every bounded sequence (xn) in X
has a subsequence (xni) such that (Txni) is convergent.

Remark. If Y is Banach, then T : X → Y is compact if and only if T (BX) is
totally bounded.

Theorem. Let X, Y be normed vector spaces, with Y Banach. Then the compect
operators from X to Y form a closed subspace of L(X,Y ).
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Proposition. Let X, Y and Z be normed vector spaces and T : X → Y , S : Y → Z
linear maps.

(i) If S is compact, T continuous, then S ◦ T is compact.

(ii) If T is compact, S is continuous then S ◦ T is compact.

1.2 Open mapping lemma

Lemma (Open mapping lemma). Let X,Y be normed, X Banach and let T ∈
L(X,Y ). Suppose that BY ⊆ T (BX). Then:

(i) BY ⊆ T (2BX) (thus T is surjective)

(ii) Y is Banach

Note. BY ⊆ T (BX) says that T (BX) is dense in BY .
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2 The Baire Category Theorem and Applications

Theorem (Principle of Uniform Boundedness). Let X Banach and Y normed and
let τ ⊆ L(X,Y ). Suppose τ is pointwise bounded (i.e. ∀x ∈ X there exists k such
that ‖T (x)‖ ≤ k for all T ∈ τ). Then τ is uniformly bounded (i.e. there exists k
such that ‖T‖ ≤ k for all T ∈ τ).

Corollary (Banach Steinhaus Theorem). Let X Banach, Y normed. Let T1, T2, . . . ∈
L(X,Y ) such that (Tnx) is convergent for all x: say Tnx → Tx. Then T is a con-
tinuous linear map.

Theorem (Open Mapping Theorem). Let X,Y be Banach, and T ∈ L(X,Y ) sur-
jective. Then T is an open mapping, i.e. there exists k such that ∀y ∈ Y , ∃x ∈ X
with Tx = y and ‖x‖ ≤ k‖y‖.

Corollary (Inversion Theorem). Let X,Y be Banach, and T ∈ L(X,Y ). Then if
T is bijective, then T−1 is continuous (hence T is an isomorphism).

Remark. If X,Y are Banach, T ∈ L(X,Y ) surjective, then Inversion Theorem
gives that T : X/ kerT → Y is an isomorphism.

Corollary (Comparable Banach norms are equivalent). Let ‖ • ‖1 and ‖ • ‖2 be
complete norms on a vector space V . Suppose that there exists c > 0 such that
‖x‖2 ≤ c‖x‖1 for all x ∈ V . Then ‖ • ‖1 and ‖ • ‖2 are equivalent. “Comparable
Banach norms are equivalent”.

2.1 The Closed Graph Theorem

Theorem (Closed Graph Theorem). Let X,Y be Banach and T : X → Y linear.
Then T is continuous if and only if T has closed graph.
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3 Spaces of Continuous Functions
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4 Hilbert Spaces

Definition (Hilbert space). A Hilbert space is a complete inner product space.

Proposition (Parallelogram law). Let X be an inner product space and x, y ∈ X.
Then:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Corollary. Let H be a Hilbert space. Then:

(i) F a closed subspace of H implies that (F⊥)⊥ = F

(ii) S ⊆ H =⇒ (S⊥)⊥ = 〈S〉

(iii) S ⊆ H has dense linear span if and only if S⊥ = {0}

Theorem (Riesz Representation Theorem). Let H be a Hilbert space, f ∈ H∗.
Then there exists y ∈ H such that f = θy (i.e. f = 〈•, y〉).

Corollary (Hilbert are self dual). Let H be a Hilbert space. Then the map θ : y 7→
θy is an isometric conjugate-linear isomorphism from H to H∗. “H is self-dual.”

Corollary. Let X be a separable inner product space. Then X has an orthonormal
basis.

Aim: We will show that for an orthonormal basis, we have

x =
∑
n

(x, en)en

for all x ∈ X.

Remark. This is false for a general Banach space. For example, 1, t, t2, . . . have
dense linear space in CR([−1, 1]) but |t| 6=

∑
k ckt

k.
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5 Spectral Theory

A useful corollary of the Inversion Theorem for Banach spaces:

Corollary 1. For a Banach space X, T ∈ L(X) invertible ⇐⇒ T injective and T
surjective.

Theorem. Let X be a Banach space, T ∈ L(X). Then ‖T‖ < 1 implies I − T is
invertible with

(I − T )−1 =
∞∑
n=0

Tn.

Notation. For a Banach space X, we write

G(X) = {T ∈ L(X) | T is invertible}.

Theorem. Let X be a Banach space. Then:

(i) G is open in L(X)

(ii) The function T 7→ T−1 from G to G is continuous

(iii) Let (Tn) in G, T ∈ L(X) with Tn → T but T /∈ G. Then ‖T−1
n ‖ → ∞

Proposition. Let X be a complex Banach space, and T ∈ L(X). Then σ(T ) is a
closed subset of

{z ∈ C | |z| ≤ ‖T‖}.

In particular, σ(T ) is compact.

Proposition. Let X be a complex Banach space, and T ∈ L(X), λ ∈ C. Then:

(i) λ is an eigenvalue of T implies λ is an approximate eigenvalue of T

(ii) λ an approximate eigenvalue of T implies λ ∈ σ(T )

10



Theorem. Let X be a complex Banach sace, T ∈ L(X). Then ∂σ(T ) ⊆ σap(T ).

Theorem (Spectral Mapping Theorem). Let X be a complex Banach space, T ∈
L(X). Let P be a non-constant polynomial. Then σ(P (T )) = P (σ(T )).

Warning. We did not use the “fact” that A not invertible =⇒ AB not invertible
(or BA not invertible).

This is false (for example, left and right shift).

Definition (Spectral value). Let X be a complex Banach space, T ∈ L(X). The
spectral value of T is:

r(T ) = sup{|λ| | λ ∈ σ(T )}.

Certainly have that r(T ) ≤ ‖T‖.

Corollary. Let X be a complex Banach space and T ∈ L(X). Then r(T ) ≤
infn≥1 ‖Tn‖1/n.

Theorem (Non-emptiness of the spectrum). Let H be a non-zero Hilbert space,
and T ∈ L(H). Then σ(T ) 6= ∅.

5.1 Spectral Theory of Hermitian Operators (all spaces are complex here)

Proposition. Let H be a Hilbert space, T ∈ L(H). Then σ(T ∗) = {λ | λ ∈ σ(T )}.

Theorem. Let H be a Hilbert space, T ∈ L(H) Hermitian. Then σ(T ) ⊆ R.

Remark. We know that any operator T on a (non-zero) Hilbert space H has an
approximate eigenvalue (σ(T ) 6= ∅ so ∂σ(T ) 6= ∅). But if T is Hermitian, then in
fact every λ ∈ σ(T ) is an approximate eigenvalue (σ(T ) ⊆ R, so σ(T ) = ∂σ(T )).
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Proposition. Let H be a Hilbert space, T ∈ L(H) Hermitian. Then r(T ) = ‖T‖.

Proposition. Let H be a Hilbert space, T ∈ L(H), and Y a subspace of H. Then
if T acts on Y , then T ∗ acts on Y ⊥. In particular for T Hermitian, if T acts on Y
then T acts on Y ⊥.

5.2 Spectral Theory of Compact Operators

Proposition. Let X be an infinite dimensional Banach space, and T ∈ L(X) com-
pact. Then 0 is an approximate eigenvalue of T .

Note. 0 need not be an eigenvalue of T , for example T : l2 → l2 defined by

T

(∑
n

xnen

)
=
∑
n

1

2n
xnen.

Proposition. Let X be a Banach space, T ∈ L(X) compact, and λ ∈ C with λ 6= 0.
Then if λ ∈ σap(T ), then λ ∈ σp(T ).

Proposition. Let X be a Banach space, T ∈ L(X) compact. Then every eigenspace
E(λ) for λ 6= 0 is finite dimensional.

Lemma. Let X be a Banach space, T ∈ L(X) compact. Then ∀δ > 0, T has only
finitely many eigenvalues with |λ| > δ.

Theorem (Spectral Theorem for Compact Operators). Let X be a Banach space,
T ∈ L(X) compact. Then:

(i) Either σ(T ) is finite or σ(T ) = {0, λ1, λ2, . . .} where λn → 0

(ii) λ ∈ σ(T ), λ 6= 0 =⇒ λ ∈ σap(T )

(iii) λ ∈ σ(T ), λ 6= 0 =⇒ dimE(λ) < ∞
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Theorem (Spectral Theorem for Compact Hermitian Operators). Let H be a sep-
arable Hilbert space, T ∈ L(H) compact Hermitian. Then:

(i) H has an orthonormal basis (en) consisting of eigenvectors of T

(ii) The corresponding eigenvalues λn → 0 (if dimH = ∞)

Theorem. Let H be a Hilbert space, T ∈ L(H) compact Hermitian. Then there
exists a closed subspace Y of H and an orthonormal basis (en) for Y and (λn) in R
such that ∀x ∈ H:

x =
∑
n

xnen + z; z ∈ Y ⊥ =⇒ Tx =
∑
n

λnxnen.
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