\setlength{\parindent}{0pt} \setlength{\parskip}{1em} { \renewtheorem{customlemma}{Lemma}[section] \renewtheorem{customtheorem}[customlemma]{Theorem} \renewtheorem{customproposition}[customlemma]{Proposition} \renewtheorem{customcorollary}[customlemma]{Corollary} \renewtheorem{customdefinition}[customlemma]{Definition} \renewtheorem{customexample}[customlemma]{Example} \renewtheorem{customremark}[customlemma]{Remark} } \newenvironment{examples}[1][(i)]{ \begin{example*} \phantom{} \begin{enumerate}[#1] } { \end{enumerate} \end{example*} } \newcommand\extendover{\glshyperlink[/]{field_ex_notation}} \newcommand\degover[2]{\glshyperlink[\ensuremath{[#1 : #2]}]{ex_deg_notation}} \newcommand\symmpoly{\glshyperlink[\ensuremath{s}]{symm_poly_notation}} \newcommand\mult[1]{\glshyperlink[\ensuremath{#1^*}]{mult_group_notation}} \newcommand\fieldadj[2]{\glshyperlink[\ensuremath{#1(#2)}]{field_adj_notation}} \newcommand\ringadj[2]{\glshyperlink[\ensuremath{#1[#2]}]{field_adj_notation}} \newcommand\Khom[1]{\glshyperlink[$#1$-homomorphism]{K_hom}} \newcommand\Khompl[1]{\glshyperlink[$#1$-homomorphisms]{K_hom}} \newcommand\Kisom[1]{\glshyperlink[$#1$-isomorphism]{K_hom}} \newcommand\Kisomic[1]{\glshyperlink[$#1$-isomorphic]{K_hom}} \newcommand\Kembedding[1]{\glshyperlink[$#1$-embedding]{K_hom}} \newcommand\Kembeddingpl[1]{\glshyperlink[$#1$-embeddings]{K_hom}} \def\fieldadjoin#1(#2){\fieldadj{#1}{#2}} \let\fadj\fieldadjoin \def\ringadjoin#1[#2]{\ringadj{#1}{#2}} \let\radj\ringadjoin \def\exdeg[#1 : #2]{\degover{#1}{#2}} \newcommand\Disc{\glshyperlink[\ensuremath{\operatorname{Disc}}]{disc_f_notation}} \newcommand\fd{\glshyperlink[\ensuremath{'}]{form_deriv_notation}} \renewcommand\characteristic{\glshyperlink[\ensuremath{\operatorname{char}}]{char}} \newcommand\fHom{\glshyperlink[\ensuremath{\Hom}]{homk_notation}} \newcommand\algclos[1]{\ol{#1}} \renewcommand\Aut{\glshyperlink[\ensuremath{\operatorname{Aut}}]{automorph_notation}} \newcommand\KAut{\glshyperlink[\ensuremath{\operatorname{Aut}}]{Kautomorph_notation}} \def\fixedf#1^#2{\glshyperlink[\ensuremath{#1^{#2}}]{fixed_field_notation}} \newcommand\Gal{\glshyperlink[\ensuremath{\operatorname{Gal}}]{galois_group_notation}} \newcommand\compfield[2]{\glshyperlink[#1#2]{comp_field_notation}} \newcommand\aTrace{\glshyperlink[\ensuremath{\Trace}]{trace_alpha_notation}} \newcommand\aNorm{\glshyperlink[\ensuremath{N}]{norm_alpha_notation}} \newcommand\qFF{\glshyperlink[\ensuremath{\FF}]{finite_field_notation}} \newcommand\Galpoly{\glshyperlink[\ensuremath{\operatorname{Gal}}]{galois_group_poly_notation}} \newcommand\galover{\glshyperlink[\ensuremath{/}]{galois_group_poly_notation}} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\res}{res} \newcommand\modred[1]{\glshyperlink[\ensuremath{\ol{#1}}]{modred_notation}} \newcommand\runity{\glshyperlink[\ensuremath{\zeta}]{zeta_n_notation}} \newcommand\runities{\glshyperlink[\ensuremath{\mu}]{mu_n_notation}} \newcommand\cycpoly{\glshyperlink[\ensuremath{\Phi}]{cyc_poly_notation}} \newcommand\cychom{\glshyperlink[\ensuremath{\chi}]{cyclotomic_hom_notation}} \newcommand\multn[2][n]{\glshyperlink[\ensuremath{(#2^*)^{#1}}]{multn_notation}} \newcommand\simeqto{\stackrel{\sim}{\to}}