%! TEX root = Galois.tex % vim: tw=50 % 24/10/2023 12PM \subsection{Separability} Over $\RR$ or $\CC$ we know from calculus that a polynomial $f$ has a repeated root $\alpha$ if and only if \[ f(\alpha) = f'(\alpha) = 0 \] To work over arbitrary \glspl{field} we proceed purely algebraically (no calculus!). \glsadjdefn{simple_root}{simple}{root} Note that we call a root \emph{simple} if it is not a repeated root. \begin{flashcard}[formal-deriv-defn] \begin{definition*}[Formal derivative] \glsnoundefn{form_deriv}{formal derivative}{formal derivatives} \glssymboldefn{form_deriv}{'}{'} \cloze{ The \emph{formal derivative} of $f = \sum_{i = 0}^d c_i X^i \in \radj K[X]$ is \[ f' = \sum_{i = 1}^d i c_i X^{i - 1} .\] } \end{definition*} \end{flashcard} \textbf{Exercise:} Check with this definition that \[ \begin{cases} (f + g)\fd = f\fd + g\fd \\ (fg)\fd = fg\fd + f\fd g \end{cases} \] \begin{flashcard}[simple-root-if-fd-lemma] \begin{lemma} % Lemma 5.2 \label{simple_root_if_fd_lemma} Let $f \in \radj K[X]$ and $\alpha \in K$ a root of $f$. Then $\alpha$ is a \gls{simple_root} root if and only if $f\fd(\alpha) \neq 0$. \end{lemma} \begin{proof} \cloze{ Write $f(X) = (X - \alpha) g(X)$ for some $g \in \radj K[X]$. Then \begin{align*} \text{$\alpha$ is a \gls{simple_root} root of $f$} &\iff \text{$X - \alpha$ is not a factor of $g$} \\ &\iff g(\alpha) \neq 0 \end{align*} But $f\fd(X) = (X - \alpha) g\fd(X) + g(X)$, so $f\fd(\alpha) = g(\alpha)$. } \end{proof} \end{flashcard} By the GCD of polynomials $f, g \in \radj K[X]$ not both zero, we mean the unique monic polynomial $\gcd(f, g)$ which generates the ideal $(f, g) \subset \radj K[X]$. This is the unique monic polynomial which divides both $f$ and $g$ and can be written as $af + bg$ for some $a, b \in \radj K[X]$. We can compute $\gcd(f, g)$, together with $a, b$, using Euclid's algorithm. \begin{flashcard}[gcd-same-in-extension-lemma] \begin{lemma} \label{gcd_same_in_extension_lemma} Let $f, g \in \radj K[X]$ and let $L \extendover K$ be any \gls{field_ex}. Then $\gcd(f, g)$ is the same computed in $\radj K[X]$ and in $\radj L[X]$. \end{lemma} \begin{proof} \cloze{ Running Euclid's algorithm on $f, g \in \radj K[X]$ gives the same answer whether we work in $\radj K[X]$ or $\radj L[X]$. } \end{proof} \end{flashcard} \begin{flashcard}[separable-poly-defn] \begin{definition*}[Separable] \glsadjdefn{sep_poly}{separable}{polynomial} \glsadjdefn[sep_poly]{insep_poly}{inseparable}{polynomial} \cloze{ An irreducible polynomial $f \in \radj K[X]$ is \emph{separable} if it splits into distinct linear factors in a \gls{splitting_field}. The convention in this course is that we use the same definition for any $0 \neq f \in \radj K[X]$. Anything which is not \gls{sep_poly} is called \emph{inseparable}. } \end{definition*} \end{flashcard} \begin{flashcard}[separable-iff-lemma] \begin{lemma} Let $0 \neq f \in \radj K[X]$. Then \[ \text{$f$ is \gls{sep_poly}} \iff \cloze{\gcd(f, f\fd) = 1.} \] \end{lemma} \begin{proof} \cloze{ Let $L$ be a \gls{splitting_field} of $f$. Then \begin{align*} \text{$f$ \gls{sep_poly}} &\iff \text{$f$ and $f\fd$ have no common roots in $L$} \\ &\iff \text{$\gcd(f, f\fd) = 1$ in $\radj L[X]$} \\ &\iff \text{$\gcd(f, f\fd) = 1$ in $\radj K[X]$} \end{align*} } \end{proof} \end{flashcard} \begin{flashcard}[irred-implies-separable] \begin{theorem} \label{irred_implies_sep} Let $f \in \radj K[X]$ \cloze{irreducible}. Then $f$ is \gls{sep_poly} \cloze{unless $\characteristic(K) = p > 0$ and $f(X) = g(X^p)$ for some $g \in \radj K[X]$.} \end{theorem} \begin{proof} \cloze{ Assume $f$ is monic. Since $f$ is irreducible, $\gcd(f, f\fd) = 1$ or $f$. If $f\fd \neq 0$ then since $\deg f\fd < \deg f$ we have $\gcd(f, f\fd) \neq f$, so $\gcd(f, f\fd) = 1$, and $f$ is \gls{sep_poly}. Now suppose that $f\fd = 0$. If $f = \sum_{i = 0}^d c_i X^i$ then $f\fd = \sum_{i = 1}^d ic_i X^{i - 1}$. So $f\fd = 0 \implies i c_i = 0 ~\forall 1 \le i \le d$. If $\characteristic(K) = 0$, then this implies that $c_i = 0$ for all $1 \le i \le d$, so $f$ is constant (hence not irreducible). If $\characteristic(K) = p > 0$ we still get $c_i = 0$ for all $i$ with $p \nmid i$. Therefore $f(X) = g(X^p)$ for some $g \in \radj K[X]$. } \end{proof} \end{flashcard} \begin{flashcard}[separable-ex-el-defn] \begin{definition*}[Separable element / extension] \glsadjdefn{sep_el}{separable}{element} \glsadjdefn{sep_ex}{separable}{extension} Let $L \extendover K$ be a \gls{field_ex}. We define: \begin{enumerate}[(i)] \item $\alpha \in L$ is \emph{separable} over $K$ if it is \gls{alg_ex} over $K$ and its \gls{min_poly} if \gls{sep_poly}. \item $L \extendover K$ is \emph{separable} if every $\alpha \in L$ is \gls{sep_el} over $K$ (in particular $L \extendover K$ is \gls{alg_ex}). \end{enumerate} \end{definition*} \end{flashcard} \begin{flashcard}[primitive-el-thm] \begin{theorem}[Theorem of the Primitive Element] \label{prim_el_thm} \cloze{ If $L \extendover K$ is \gls{finite_ex} and \gls{sep_ex} then $L \extendover K$ is \gls{simple_ex} (that is, $L = \fadj K(\theta)$ for some $\theta \in L$). } \end{theorem} \begin{proof} \cloze{ Write $L = \fadj L(\alpha_1, \ldots, \alpha_n)$ for some $\alpha_i \in L$. We must show that $L = \fadj K(\theta)$ for some $\theta \in L$. It suffices to prove the case $n = 2$, since the general case follows by induction on $n$. Write $L = \fadj K(\alpha, \beta)$, and let $f$ and $g$ be the \glspl{min_poly} of $\alpha$ and $\beta$ over $K$. Let $M$ be a \gls{splitting_field} for $fg$ over $L$. Write \[ f(X) = \prod_{i = 1}^r (X - \alpha_i), \qquad \alpha_i \in M, \alpha = \alpha_1 \] \[ g(X) = \prod_{i = 1}^s (X - \beta_i), \qquad \beta_i \in M, \beta = \beta_1 \] Now $L \extendover K$ \gls{sep_ex} implies $\beta$ \gls{sep_el} over $K$, which implies $\beta_1, \ldots, \beta_s$ are distinct. We pick some $c \in K$ and let $\theta = \alpha + c\beta$. Let $F(X) = f(\theta - cX) \in \radj\fadj K(\theta)[X]$. Then $F(\beta) = f(\theta - c\beta) = f(\alpha) = 0$, and $g(\beta) = 0$. \textbf{If} $\beta_2, \ldots, \beta_s$ are not roots of $F$ then \begin{align*} \text{$\gcd(F, g) = X - \beta$ in $\radj M[X]$} &\implies \text{$\gcd(F, g) = X - \beta$ in $\radj\fadj K(\theta)[X]$} \\ &\implies \beta \in \fadj K(\theta) \end{align*} But then $\alpha = \theta - c\beta \in \fadj K(\theta)$ so $\fadj K(\alpha, \beta) \subset \fadj K(\theta)$. But clearly $\fadj K(\theta) \subset \fadj K(\alpha, \beta)$, and hence $L = \fadj K(\alpha, \beta) = \fadj K(\theta)$. We are done unless $\fadj F(\beta_j) = 0$ for some $2 \le j \le s$. In this case, we have $f(\theta - c\beta_j) = 0$ for some $2 \le j \le s$, and so $\alpha + c\beta = \alpha_i + c\beta_j$ for some $1 \le i \le r$, $2 \le j \le s$. If $|K| = \infty$ then since $\beta \not\in \{\beta_2, \ldots, \beta_s\}$ we can pick $c \in K$ such that this never happens. If $|K| < \infty$, then $|L| < \infty$ and by \cref{cyclic_mult_subgroup}, $\mult{L}$ is cyclic and generated by $\theta$ (say). Then $L = \fadj K(\theta)$. } \end{proof} \end{flashcard}