%! TEX root = Galois.tex % vim: tw=50 % 19/10/2023 12AM \begin{flashcard}[algebraically-closed-defn] \begin{definition*}[algebraically closed field] \glsdefn{alg_closed}{algebraically closed}{N/A} \cloze{ A \gls{field} $K$ is \emph{algebraically closed} if every nonconstant polynomial in $\ringadjoin K[X]$ has a root in $K$. Equivalently, if every irreducible polynomial in $\ringadjoin K[X]$ is linear. } \end{definition*} \end{flashcard} \begin{example*} $\CC$, by the fundamental theorem of algebra. \end{example*} \begin{flashcard}[algebraically-closed-tfae-lemma] \begin{lemma} \label{alg_closed_tfae} Let $K$ be a \gls{field}. Then the following are equivalent: \begin{enumerate}[(i)] \item $K$ is \gls{alg_closed}. \item \cloze{If $L \extendover K$ is a \gls{field_ex} and $\alpha \in L$ is \gls{alg_el} over $K$ then $\alpha \in K$.} \item \cloze{If $L \extendover K$ is \gls{alg_ex} then $L = K$.} \item \cloze{If $L \extendover K$ is \gls{finite_ex} then $L = K$.} \end{enumerate} \end{lemma} \begin{proof} \cloze{ (ii) $\implies$ (iii) $\implies$ (iv) are all clear. For (iv) $\implies$ (i), let $f \in \ringadjoin K[X]$ be an irreducible polynomial. Then $L = \ringadjoin K[X] / (f)$ is a finite extension of $K$ with $\exdeg[L : K] = \deg f$. By (iv) we have $L = K$. Therefore $f$ is linear. } \end{proof} \end{flashcard} \begin{flashcard}[algebraic-closure-defn] \begin{definition*}[algebraic closure] \glsdefn{alg_closure}{algebraic closure}{algebraic closures} \cloze{ If $L \extendover K$ is \gls{alg_ex} and $L$ is \gls{alg_closed} then we say that $L$ is an \emph{algebraic closure} of $K$. } \end{definition*} \end{flashcard} \begin{flashcard}[algebraically-closed-extension-lemma] \begin{lemma} % Lemma 3.9 \label{alg_closed_extension_lemma} Let $L \extendover K$ be an \gls{alg_ex} \gls{ex} such that every polynomial in $\ringadjoin K[X]$ splits into linear factors over $L$. Then $L$ is \gls{alg_closed} (and hence an \gls{alg_closure} of $K$). \end{lemma} \begin{proof} \cloze{ If $L$ is not \gls{alg_closed} then by \cref{alg_closed_tfae} there exists $M \extendover L$ \gls{alg_ex} with $\degover{M}{L} > 1$. Both $M \extendover L$ and $L \extendover K$ are \gls{alg_ex}. So by \cref{alg_tower_prop}, $M \extendover K$ is \gls{alg_ex}. Pick any $\alpha \in M$. Let $f$ be the \gls{min_poly} for $\alpha$ over $K$. By our assumption, $f$ splits over $L$, so $\alpha \in L$. So $M = L$.} \end{proof} \end{flashcard} Later we will show that every \gls{field} $K$ has an \gls{alg_closure}. Here are two easy cases: \begin{flashcard}[algebraic-closure-in-C-or-finite] \begin{theorem} Suppose that (i) $K \subset \CC$ or (ii) $K$ is countable. Then $K$ has an \gls{alg_closure}. \end{theorem} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item \cloze{If $K \subset \CC$ then let \[ L = \{\alpha \in \CC \mid \text{$\alpha$ is \gls{alg_el} over $K$}\} .\] $L$ is a \gls{field} by \cref{algebraic_is_subfield_coro}, $L \extendover K$ is \gls{alg_ex}. If $f \in \ringadjoin K[X]$ then write $f(X) = \prod_{i = 1}^n (X - \alpha_i)$ for some $\alpha_i \in \CC$. The definition of $L$ implies that all the $\alpha_i \in L$, i.e. $f$ splits into linear factors over $L$. Then \cref{alg_closed_extension_lemma} gives that $L$ is \gls{alg_closed}. Therefore $L$ is the \gls{alg_closure} of $K$.} \item \cloze{If $K$ is countable then so $\ringadjoin K[X]$. Enumerate the monic irreducible polynomials $f_1, f_2, f_3, \ldots$. Let $L_0 = k$ and for each $i \ge 1$ let $L_i$ be a \gls{splitting_field} for $f_i$ over $L_{i - 1}$. Then \[ L_0 \subset L_1 \subset L_2 \subset \cdots \] Then $L = \bigcup_{n \ge 0} L_n$ is a \gls{field}, $L \extendover K$ is \gls{alg_ex}, and every polynomial in $\ringadjoin K[X]$ splits over $L$. Then \cref{alg_closed_extension_lemma} implies that $L$ is \gls{alg_closed}. Therefore $L$ is an \gls{alg_closure} of $K$.} \qedhere \end{enumerate} \end{proof} \end{flashcard} \begin{remark*} Taking $K = \QQ$ in the proof of (i), we see that $\algclos{\QQ} = \{\text{\gls{alg_Q} numbers}\} \subset \CC$ is \gls{alg_closed}. \end{remark*} \newpage \section{Symmetric Polynomials} \label{sec_4} Suppose we wish to find the roots of a cubic polynomial $f(X) = X^3 + a X^2 + b X + c \in \ringadjoin \QQ[X]$. After substituting $X - \frac{a}{3}$ for $X$ we may assume $a = 0$. Writing \[ f(X) = (X - \alpha)(X - \beta)(X - \gamma) \] and comparing coefficients gives \begin{align*} \alpha + \beta + \gamma &= -a = 0 \\ \alpha \beta + \beta \gamma + \gamma \alpha &= b \\ \alpha \beta \gamma &= -c \end{align*} Let $\omega = e^{2\pi i / 3}$. Write \[ \alpha = \frac{1}{3} [\ub{(\alpha + \beta + \gamma)}_{=0} + \ub{(\alpha + \omega \beta + \omega^2 \gamma)}_{=u} + \ub{(\alpha + \omega^2 \beta + \omega \gamma)}_{=v}] \] Then $u^3 + v^3$ and $uv$ are unchanged under permuting $\alpha, \beta, \gamma$. After some calculation we find (remembering $a = 0$) that \[ u^3 + v^3 = -27c \qquad \text{and} \qquad uv = -3b \] Therefore $u^3$ and $v^3$ are the roots of \[ X^2 + 27cX - 27b^3 = 0 \] \glsdefn{cardano_formula}{Cardano's formula}{N/A} Solving this quadratic and taking cube roots gives a formula for the roots of a cube, usually called Cardano's formula. Let $S_n$ be the symmetric group on $n$ letters. \begin{flashcard}[symmetric-polynomial-defn] \begin{definition*}[symmetric polynomial] \glsadjdefn{symmetric}{symmetric}{polynomial} \glsdefn{symm_poly}{symmetric polynomial}{symmetric polynomials} \cloze{ Let $R$ be a ring. A polynomial $f \in \ringadjoin R[X_1, \ldots, X_n]$ is \emph{symmetric} if \[ f(X_{\sigma(1)}, \ldots, X_{\sigma(n)}) = f(X_1, \ldots, X_n) \qquad \forall \sigma \in S_n \] If $f$ and $g$ are \gls{symmetric} then so are $f + g$ and $fg$. Therefore the \glspl{symm_poly} form a subring of $\ringadjoin R[X_1, \ldots, X_n]$. } \end{definition*} \end{flashcard} \begin{flashcard}[elementary-symmetric-functions-defn] \begin{definition*}[elementary symmetric functions] \glsdefn{elem_symm_func}{elementary symmetric function}{elementary symmetric functions} \glssymboldefn{symm_poly}{elementary symmetric function notation}{$s_i$} \cloze{ The \emph{elementary symmetric functions} are the polynomials $\symmpoly_1, \ldots, \symmpoly_n$ in $\ringadjoin \ZZ[X_1, \ldots, X_n]$ such that \[ \prod_{i = 1}^n (T + X_i) = T^n + \symmpoly_1 T^{n - 1} + \cdots + \symmpoly_{n - 1} T + \symmpoly_n \] } \end{definition*} \end{flashcard} \begin{example*} When $n = 3$, \begin{align*} \symmpoly_1 &= X_1 + X_2 + X_3 \\ \symmpoly_2 &= X_1 X_2 + X_1 X_3 + X_2 X_3 \\ \symmpoly_3 &= X_1 X_2 X_3 \end{align*} In general, \[ \symmpoly_r = \sum_{1 \le i_1 < \cdots < i_r \le n} X_{i_1} X_{i_2} \cdots X_{i_r} \] \end{example*} \begin{flashcard}[symm-func-thm] \begin{theorem}[Symmetric Function Theorem] \label{symm_func_thm} \cloze{ \phantom{} \begin{enumerate}[(i)] \item Every \gls{symm_poly} over $R$ can be expressed as a polynomial in the \glspl{elem_symm_func}, with coefficients in $R$. \item There are no non-trivial relations between the $\symmpoly_i$. \end{enumerate} } \end{theorem} \end{flashcard} \begin{remark*} Consider the ring homomorphism \begin{align*} R[\tau_1, \ldots, \tau_n] &\stackrel{\theta}{\to} \ringadjoin R[X_1, \ldots, X_n] \\ \tau_i &\mapsto \symmpoly_i \end{align*} Then part (i) of \nameref{symm_func_thm} says that \[ \Im(\theta) = \{\text{\glspl{symm_poly} in $\ringadjoin R[X_1, \ldots, X_n]$}\} ,\] and part (ii) says $\theta$ is injective. \end{remark*}