%! TEX root = Galois.tex % vim: tw=50 % 17/10/2023 12AM \begin{note*} (ii) implies that $\exdeg[L : K] < \infty$. \end{note*} \begin{flashcard}[existence-of-splitting-fields] \begin{theorem}[Existence of splitting fields] \label{existence_of_splitting_fields} Let $0 \neq f \in \ringadjoin K[X]$. Then there exists a \gls{splitting_field} for $f$ over $K$. \end{theorem} \begin{proof} \cloze{ (We adjoin roots of $f$ one at a time). The proof is by induction on the degree of $f$. If $\deg f \le 1$ then $L = K$ is the \gls{splitting_field}. Now assume every polynomial of degree $< \deg f$ has a \gls{splitting_field}. Let $g$ be an irreducible factor of $f$. Let $K_1 = \ringadjoin K[X] / (g)$ and $\alpha_1 = X + (g) \in \ringadjoin K[X]$, with $K_1 = \fieldadjoin K(\alpha_1)$. Then $f(\alpha_1) = 0$. So $f(X) = (X - \alpha_1) f_1(X)$ for some $f_1 \in \ringadjoin K_1[X]$ with $\deg f_1 < \deg f$. By induction hypothesis there exists a \gls{splitting_field} $L$ for $f_1$ over $K_1$, so $L = \fieldadjoin K_1(\alpha_2, \ldots, \alpha_n)$ where $\alpha_2, \ldots, \alpha_n$ are the roots of $f_1$ in $L$. We claim that $L$ is a \gls{splitting_field} for $f$ over $K$. Since $f_1$ splits in $L$, so does $f(X) = (X - \alpha) f_1(X)$. Moreover $L = \fieldadjoin K_1(\alpha_2, \ldots, \alpha_n) = \fieldadjoin K(\alpha_1, \ldots, \alpha_n)$ and $\alpha_1, \ldots, \alpha_n$ are roots of $f$. Therefore $L$ satisfies (i) and (ii). } \end{proof} \end{flashcard} \begin{flashcard}[uniqueness-of-splitting-fields] \begin{theorem}[Uniqueness of splitting fields] \label{uniqueness_of_splitting_fields} \cloze{ Let $0 \neq f \in \ringadjoin K[X]$. Let $L$ be a \gls{splitting_field} of $f$ over $K$. Let $\sigma : K \hookrightarrow M$ be any \gls{field_embedding} such that $\sigma f \in \ringadjoin M[X]$ splits. Then \begin{enumerate}[(i)] \item There exists a \gls{sigma_embedding} $\tau : L \hookrightarrow M$. \item If $M$ is a \gls{splitting_field} for $\sigma f$ over $\sigma K$ then any $\tau$ as in (i) is an isomorphism. \end{enumerate} In particular any two \glspl{splitting_field} for $f$ over $K$ are \glsref[K_hom]{$K$-isomorphic}. } \end{theorem} \fcscrap{ \begin{center} \includegraphics[width=0.6\linewidth] {images/cfe26d7a6ce011ee.png} \end{center} } \begin{proof} \phantom{} \begin{enumerate}[(i)] \item \cloze{By induction on $n = \exdeg[L : K]$. If $n = 1$ then $L = K$ and there is nothing to prove. So suppose $n > 1$ and let $g \in \ringadjoin K[X]$ be an irreducible factor of $f$, of degree $> 1$. Let $\alpha \in L$ be a root of $g$. Let $\beta \in M$ be a root of $\sigma g$. By \cref{simple_extension_sigma_hom_bijection}, $\sigma$ extends to an \gls{embedding} $\sigma_1 : \fieldadjoin K(\alpha) \to M$, $\alpha \mapsto \beta$. Then $\exdeg [L : \fieldadjoin K(\alpha)] < \exdeg[L : K]$. $L$ is a \gls{splitting_field} of $f$ over $\fieldadjoin K(\alpha)$ and $\sigma_1 f = \sigma f$ splits in $M$. So by the induction hypothesis $\sigma_1$ extends to an \gls{embedding} $\tau : L \to M$.} \item \cloze{Pick any $\tau : L \hookrightarrow M$ as in (i). Let $\alpha_1, \ldots, \alpha_n$ be the roots of $f$ in $L$. The roots of $\sigma f$ in $M$ are $\tau \alpha_1$, \ldots, $\tau \alpha_n$ (consider splitting $\sigma f$ as a product of linear factors in two ways, and then use the fact that $\ringadjoin M[X]$ is a UFD). So if $M$ is a \gls{splitting_field} for $\sigma f$ over $\sigma K$ then \[ M = \sigma \fieldadjoin K(\tau\alpha_1, \ldots, \tau\alpha_n) = \tau(\fieldadjoin K(\alpha_1, \ldots, \alpha_n)) = \tau(L) \] So $\tau$ is surjective, so it's an isomorphism (recall \glspl{field_embedding} are always injective).} \end{enumerate} \cloze{For the final statement, suppose $L \extendover K$ and $M \extendover K$ are \glspl{splitting_field} for $f$ over $K$, and let $\sigma : K \hookrightarrow M$ be the inclusion map. Then (i) and (ii) give a \glsref[K_hom]{$K$-isomorphism} $L \to M$.} \end{proof} \end{flashcard} \begin{warning*} The previous theorem means that we can say ``the \gls{splitting_field} of $f$ over $K$'' since all such \glspl{field} are isomorphic. However, the isomorphism between such \glspl{field} is not necessarily unique, an in fact in some cases we can use a non-identity automorphism. \end{warning*} \begin{example*} If $K \subset \CC$ then by the fundamental theorem of algebra, one \gls{splitting_field} for $f$ over $K$ is the subfield $\fieldadjoin K(\alpha_1, \ldots, \alpha_n) \subset \CC$ where $\alpha_1, \ldots, \alpha_n \in \CC$ are the roots of $f$. \begin{enumerate}[(i)] \item Consider \[ f(X) = X^3 - 2 = (X - \sqrt[3]{2})(X - \omega \sqrt[3]{2})(X - \omega^2 \sqrt[3]{2}) \in \ringadjoin \QQ[X] \] Then $\fieldadjoin \QQ(\omega, \sqrt[3]{2})$ is a \gls{splitting_field} for $f$ over $\QQ$. \begin{center} \includegraphics[width=0.6\linewidth] {images/cf0594c06ce211ee.png} \end{center} By the \nameref{tower_law} $\exdeg[\fieldadjoin\QQ(\omega, \sqrt[3]{2}) : \QQ]$ is $\le 6$ and is divisible by both $2$ and $3$. Since $\gcd(2, 3) = 1$, we get $\exdeg[\fieldadjoin \QQ(\omega, \sqrt[3]{2}) : \QQ] = 6$. \item Let $p$ be an odd prime and \begin{align*} f(X) &= \frac{X^p - 1}{X - 1} = X^{p - 1} + \cdots + X^2 + X + 1 \in \ringadjoin \QQ[X] \\ &= \prod_{r = 1}^{p - 1} (X - \zeta_p^r) \end{align*} where $\zeta_p = e^{2\pi i / p}$. Then $f$ has \gls{splitting_field} \[ \fieldadjoin \QQ(\zeta_p, \zeta_p^2, \ldots, \zeta_p^{p - 1}) = \fieldadjoin \QQ(\zeta_p) \] So in this case the \gls{splitting_field} is obtained by adjoining just one root. \item Let $f(X) = X^3 - 2 \in \ringadjoin \FF_7[X]$. Then $f$ is irreducible (since $2$ isn't a cube modulo $7$). Let $L = \ringadjoin \FF_7[X] / (f)$, so $L = \fieldadjoin \FF_7(\alpha)$ with $\alpha^3 = 2$. Noting that $2^3 \equiv 1 \pmod{7}$, we get that $f(X) = (X - \alpha)(X - 2\alpha)(X - 4\alpha)$. So $L = \fieldadjoin \FF_7(\alpha)$ is a \gls{splitting_field} for $f$ over $\FF_7$. \end{enumerate} \end{example*}