%! TEX root = Galois.tex % vim: tw=50 % 14/10/2023 12AM \begin{remark*} The last example shows that a regular $9$-gon cannot be \glsref[constructible_point]{constructed} with \glsref[constructible_point]{ruler and compass}. Later we will prove the result of Gauss which says that a regular $n$-gon is \gls{constructible_point} if and only if $\phi(n)$ is a power of 2. \end{remark*} \newpage \section{Splitting Fields} \textbf{Question:} Let $f \in \ringadjoin K[X]$ be a nonconstant polynomial. Is there a \gls{field_ex} $L \extendover K$ in which $f$ has a root? (or even better: an \gls{ex} in which $f$ splits into linear factors)? If $K \subset \CC$ then the fundamental theorem of algebra shows we can factor $f$ in $\ringadjoin \CC[X]$ as a product of linear polynomials. But what about $K = \FF_p$? \begin{flashcard}[K-hom-defn] \begin{definition}[$K$-homomorphism] % Definition 3.1 \glsdefn{K_hom}{$K$-homomorphism}{$K$-homomorphisms} \glsalias{K_embedding}{$K$-embedding}{$K$-embeddings} \cloze{Let $L \extendover K$ and $M \extendover K$ be \glspl{field_ex}. A \emph{$K$-homomorphism} (or \emph{$K$-embedding}) of $L$ into $M$ is a ring homomorphism $L \to M$ which is the identity on $K$.} \end{definition} \end{flashcard} \begin{flashcard}[simple-extension-automorphisms-bound] \begin{theorem} % Theorem 3.2 \label{automorphisms_bound} Let $L = \fieldadjoin K(\alpha)$ where $\alpha$ is \gls{alg_el} over $K$ with \gls{min_poly} $f$. Let $M \extendover K$ be any \gls{field_ex}. Then there is a bijection \cloze{ \begin{align*} \{\text{\Khom{K} $L \to M$}\} &\leftrightarrow \{\text{roots of $f$ in $M$}\} \\ \tau &\mapsto \tau(\alpha) \end{align*} } In particular (by \cref{roots_bound_lemma}), \[ \cloze{\#\{\text{\Khompl{K} $L \to M$}\} \le \deg f} \] \end{theorem} \begin{proof} \cloze{ Write $f = \sum_{i = 0}^d c_i X^i$, $c_i \in K$. Let $\tau : L \to M$ be a \Khom{K}. Then \begin{align*} f(\tau(\alpha)) &= \sum_i c_i \tau(\alpha)^i \\ &= \tau \left( \sum_i c_i \alpha^i \right) \\ &= \tau(f(\alpha)) \\ &= 0 \end{align*} Therefore $\tau(\alpha) \in M$ is a root of $f$. \textbf{Injectivity:} Since $L = \fieldadjoin K(\alpha)$, and \Khom{K} $\tau : L \to M$ is uniquely determined by $\tau(\alpha)$. \textbf{Surjectivity:} We saw earlier that evaluation at $\alpha$ gives an isomorphism $\ringadjoin K[X] / (f) \to \fieldadjoin K(\alpha) = L$ where $X + (f) \mapsto \alpha$. Now let $\beta \in M$ be a root of $f$. Since $f$ is irreducible it is the \gls{min_poly} for $\beta$ over $K$. Evaluation at $\beta$ gives a ring homomorphism \begin{align*} \ringadjoin K[X] &\to M \\ g &\mapsto g(\beta) \end{align*} with kernel $(f)$. By the isomorphism theorem we get \begin{align*} \frac{\ringadjoin K[X]}{(f)} &\stackrel{\psi}{\hookrightarrow} M \\ X + (f) &\mapsto \beta \end{align*} Since $\phi, \psi$ are \Khompl{K} and $\phi$ is an isomorphism it follows that \[ \tau = \psi \cdot \phi^{-1} : L \to M \] is a \Khom{K} with $\tau(\alpha) = \beta$. } \end{proof} \end{flashcard} \begin{example*} There are exactly 2 \Khom{\QQ} $\fieldadjoin \QQ(\sqrt{2}) \to \RR$ given by $a + b\sqrt{2} \mapsto b\sqrt{2}$ and $a + b\sqrt{2} \mapsto a - b\sqrt{2}$, $a, b \in \QQ$. We actually need a slight variant of \cref{automorphisms_bound}. The proof is exactly the same, but the extra generality is useful for inductive proofs. \end{example*} \begin{flashcard}[sigma-embedding] \begin{definition}[$\sigma$-embedding] \glsdefn{sigma_embedding}{$\sigma$-embedding}{$\sigma$-embeddings} \glsnoundefn[sigma_embedding]{sigma_hom}{$\sigma$-homomorphism}{$\sigma$-homomorphisms} \cloze{ Let $L \extendover K$ and $M \extendover K'$ be \glspl{field_ex}. Let $\sigma : K \to K'$ be a \gls{field} \gls{embedding}. A $\sigma$-embedding $\tau : L \to M$ is an \gls{embedding} which extends $\sigma$, i.e. $\tau(x) = \sigma(x) ~\forall x \in K$. Equivalently, $\sigma = \tau|_K$ is the restriction of $\tau$ to $K$. } \end{definition} \end{flashcard} \begin{center} \includegraphics[width=0.6\linewidth] {images/c74081546a8611ee.png} \end{center} \begin{note*} Taking $\sigma = \id : K \to K$ we recover the definition of a \glsref[K_hom]{$K$-embedding}. \end{note*} \begin{theorem} % Theorem 3.4 \label{simple_extension_sigma_hom_bijection} Let $L = \fieldadjoin K(\alpha)$ where $\alpha$ is \gls{alg_el} over $K$ with \gls{min_poly} $f$. Let $\sigma : K \to K'$ be a \gls{field} \gls{embedding}, and $M \extendover K'$ any \gls{field_ex}. Then there is a bijection \begin{align*} \{\text{\glspl{sigma_embedding} $L \to M$}\} &\to \{\text{roots of $\sigma f$ in $M$}\} \\ \tau &\mapsto \tau(\alpha) \end{align*} (where $\sigma f$ is the polynomial in $\ringadjoin K'[X]$ obtained by applying $\sigma$ to each coefficient of $f$). In particular, \[ \#\{\text{\glspl{sigma_embedding} $L \to M$}\} \le \deg f \] \end{theorem} \begin{example*} Let $K = \fieldadjoin \QQ(\sqrt{2})$ and let $L = \fieldadjoin \QQ(\alpha)$ where $\alpha = \sqrt{1 + \sqrt{2}}$ (exercise: check that $1 + \sqrt{2}$ is not a square in $K$, so that we get $\exdeg[L : K] = 2$). There are exactly 2 \glspl{K_embedding} $L \to \RR$ given by $\alpha \mapsto \pm \sqrt{1 + \sqrt{2}}$. However, if $\sigma : K \to K$, $a + b \sqrt{2} \mapsto a - b\sqrt{2}$ then there are no \glspl{sigma_embedding} $L \to \RR$ (since $1 - \sqrt{2} < 0$). \end{example*} \begin{flashcard}[splitting-field-defn] \begin{definition}[splitting field] \glsdefn{splitting_field}{splitting field}{splitting fields} \cloze{ Let $K$ be a \gls{field}. Let $0 \neq f \in \ringadjoin K[X]$. An extension $L \extendover K$ is a \emph{splitting field} of $f$ over $K$ if \begin{enumerate}[(i)] \item $f$ splits into linear factors over $L$. \item $L = \fieldadjoin K(\alpha_1, \ldots, \alpha_n)$ where $\alpha_i$ are the roots of $f$ in $L$. \end{enumerate} } \end{definition} \end{flashcard} \begin{remark*} (ii) is equivalent to saying $f$ does not split into linear factors over any (proper) subfield of $L$ containing $K$. \end{remark*}