%! TEX root = Galois.tex % vim: tw=50 % 12/10/2023 12PM \begin{flashcard}[algebraic-iff-finite-dim-lemma] \begin{lemma} \label{algebraic_if_finite_dimension} Let $L \extendover K$ be a \gls{field_ex} and $\alpha_1, \ldots, \alpha_n \in L$. Then \[ \text{$\alpha_1, \ldots, \alpha_n$ are \gls{alg_el} over $K$} \iff \exdeg[\fieldadjoin K(\alpha_1, \ldots, \alpha_n) : K] < \infty .\] \end{lemma} \begin{proof} \fcscrap{The case $n = 1$ was a remark in the previous lecture.}\phantom{} \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] \cloze{By induction on on $n$ using \nameref{tower_law}.} \item[$\Leftarrow$] \cloze{Clear since $\fieldadjoin K(\alpha_1) \subset \fieldadjoin K(\alpha_1, \ldots, \alpha_n)$.} \qedhere \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[algebraic-is-subfield-coro] \begin{corollary} \label{algebraic_is_subfield_coro} Let $L \extendover K$ be any \gls{field_ex}. Then the set \[ \{\alpha \in L \mid \text{$\alpha$ is \gls{alg_ex} over $K$}\} \] is a subfield of $L$. \end{corollary} \begin{proof} \cloze{ If $\alpha, \beta$ are \gls{alg_el} over $K$ then by \cref{algebraic_if_finite_dimension} $\exdeg[\fieldadjoin K(\alpha, \beta) : K] < \infty$. Let $\gamma = \alpha \pm \beta$, or $\alpha \beta$ or (if $\alpha \neq 0$) $\frac{1}{\alpha}$. Then $\gamma \in \fieldadjoin K(\alpha, \beta)$, so since $\exdeg[\fieldadjoin K(\alpha, \beta, \gamma) : K] < \infty$, by \cref{algebraic_if_finite_dimension}, we get that $\gamma$ is \gls{alg_el} over $K$. } \end{proof} \end{flashcard} \begin{example*} Taking $K = \QQ$ and $L = \CC$ we see that \[ \algclos{\QQ} = \{\text{\gls{alg_Q} numbers}\} \] is a \gls{field}. Since $\algclos{\QQ} \subset \fieldadj \QQ(\sqrt[2]{2})$ and $\exdeg[\fieldadj \QQ(\sqrt[d]{2}) : \QQ] = d$ for all $d$, we see that $\exdeg[\algclos{\QQ} : \QQ] = \infty$. \end{example*} \begin{flashcard}[algebraic-tower-prop] \begin{proposition} \label{alg_tower_prop} Let $M \extendover L \extendover K$ be a \gls{field_ex}. Then \[ \text{$M \extendover K$ is \gls{alg_ex}} \iff \text{$M \extendover L$ and $L \extendover K$ are both \gls{alg_ex}} \] \end{proposition} \begin{proof} \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] \cloze{Every element of $M$ is \gls{alg_el} over $K$, hence \gls{alg_el} over $L$, so $M \extendover L$ is \gls{alg_ex}. Also, as $L \subset M$, $L$ is \gls{alg_ex} over $K$.} \item[$\Leftarrow$] \cloze{Let $\alpha \in M$. We must show that $\alpha$ is \gls{alg_el} over $K$. Since $M \extendover L$ is \gls{alg_ex}, $\alpha$ is a root of some \[ f(X) = c_n X^n + \cdots + c_1 X + c_0 \in \ringadjoin L[X] \] Let $L_0 = \fieldadjoin K(c_0, c_1, \ldots, c_n)$. Since each $c_i$ is \gls{alg_el} over $K$, \cref{algebraic_if_finite_dimension} gives $\exdeg[L_0 : K] < \infty$. But $f$ has coefficients in $L_0$, so $\exdeg[L_0(\alpha) : L_0] \le \deg f < \infty$. By \nameref{tower_law} $\exdeg[\fieldadjoin L_0(\alpha) : K] < \infty$. Therefore $\alpha$ is \gls{alg_el} over $K$.} \qedhere \end{enumerate} \end{proof} \end{flashcard} \newpage \section{Ruler and Compass Constructions} \label{sec2} We use our results on \glspl{field_ex} to show that certain classical problems cannot be solved. \begin{flashcard}[ruler-compass-construction] \begin{definition*}[Ruler and Compass Construction] \glsdefn{constructible_point}{constructible}{N/A} \glsalias{constructed_point}{constructed}{N/A} \cloze{ Let $S \subset \RR^2$ be a finite set of points. We may: \begin{enumerate}[(i)] \item Draw a straight line through any 2 distinct points in $S$. \item Draw a circle with centre any point in $S$ and radius the distance between 2 points in $S$. \item Enlarge $S$ by adjoining any point of intersection of 2 distinct lines or circles. \end{enumerate} A point $(x, y) \in \RR^2$ is \emph{constructible} from $S$ if we can enlarge $S$ to contain $(x, y)$ by a finite sequence of the above operations. \glsdefn{constructible_real}{constructible}{N/A} A number $x \in \RR$ is constructible if $(x, 0)$ can be \gls{constructed_point} from $\{(0, 0), (1, 0)\}$. } \end{definition*} \end{flashcard} \vspace{-1em} We will relate this to the following: \begin{flashcard}[constructible-field-defn] \begin{definition*}[Constructible Field] \glsdefn{constructible_field}{constructible}{N/A} \cloze{ Let $K \subset \RR$ be a subfield. We say that $K$ is constructible if there exists integer $n \ge 0$ and a sequence of subfields of $\RR$ \[ \QQ = F_0 \subset F_1 \subset F_2 \subset \cdots \subset F_n \] such that $\exdeg[F_i : F_{i - 1}] = 2$ for all $i$ and $K \subset F_n$. } \end{definition*} \end{flashcard} \begin{remark*} We see by \nameref{tower_law} that $K$ \gls{constructible_field} $\implies$ $\exdeg[K : \QQ]$ is a power of 2. \end{remark*} \begin{flashcard}[compass-construction-is-constructible-field] \begin{theorem} % Theorem 2.1 \label{compass_construction_is_constructible_field} If $x \in \RR$ is \gls{constructible_real}, then $\fieldadjoin \QQ(x)$ is a \gls{constructible_field} subfield of $\RR$. \end{theorem} \begin{proof} \cloze{ Suppose $S \subset \RR^2$ is a finite set of points all of whose coordinates belong to a \gls{constructible_field} \gls{field} $K$. It suffices to show that if we adjoin $(x, y) \in \RR^2$ to $S$ using (iii), then $K(x, y)$ is also \gls{constructible_field}. Since $K$ is \gls{constructible_field}, there exists a sequence $\QQ = F_0 \subset F_1 \subset \cdots \subset F_n$ with $\exdeg[F_i : F_{i - 1}] = 2$ for all $1 \le i \le n$ and $K \subset F_n$. The lines and circles in (i) and (ii) have equations of the form $ax + by = c$ and $(x - a)^2 + (y - b)^2 = c$ with $a, b, c \in K$. If $(x, y)$ is a point of intersection of 2 such lines or circles then $x = r + s\sqrt{v}$, $y = t + u\sqrt{v}$ for some $r, s, t, u, v \in K$. Therefore $x, y \in \fieldadjoin K(\sqrt{v}) \subset \fieldadjoin F_n(\sqrt{v})$. Since $\exdeg[\fieldadjoin F_n(\sqrt{v}) : F_n]$ is 1 or 2, it follows that $\fieldadjoin K(x, y)$ is \gls{constructible_field}. } \end{proof} \end{flashcard} \begin{remark*} It can be shown that $(x \pm y, 0)$, $(x / y, 0)$ and $(\sqrt{x}, 0)$ are \gls{constructible_point} from the set $\{(0, 0), (1, 0), (x, 0), (y, 0)\}$. Using this, one can also prove that the converse of \cref{compass_construction_is_constructible_field} holds, i.e. $\fieldadjoin \QQ(x)$ is \gls{constructible_field} implies $x$ is \gls{constructible_real}. \end{remark*} \begin{corollary} % Corollary 2.2 \label{constructible_requires_power_of_2} If $x \in \RR$ is \gls{constructible_real} then $x$ is \gls{alg_el} over $\QQ$ and $\exdeg[\fieldadjoin \QQ(x) : \QQ]$ is a power of 2. \end{corollary} \subsubsection*{Some Classical Problems} \begin{enumerate}[(1)] \item \textbf{Squaring the circle:} One classical problem is to \glsref[constructible_point]{construct} a square whose area is the same as that as a circle with unit radius. This amounts to \glsref[constructible_real]{constructing} the real number $\sqrt{\pi}$. This is impossible by \nameref{constructible_requires_power_of_2} and the fact that $\pi$ is \gls{transc_Q} (Lindeman). \item \textbf{Duplicating the cube:} \glsref[constructible_point]{Construct} a cube whose volume is twice that of a given cube. This amounts to \glsref[constructible_real]{construction} of $\sqrt[3]{2}$. But $\sqrt[3]{2}$ has \gls{min_poly} $X^3 - 2$ so $\exdeg[\fieldadjoin \QQ(\sqrt[3]{2}) : \QQ] = 3$, which is not a power of 2. \item \textbf{Trisecting the angle:} One is to divide a given angle into 3 equal angles. Let us suppose the given angle is $120^\circ = \frac{2\pi}{3}$. Since this is itself \gls{constructible_real}, if the trisection problem can be solved, then the angle $\frac{2\pi}{9}$ is \gls{constructible_point}, in other words the real numbers $\cos \left( \frac{2\pi}{9} \right)$ and $\sin \left( \frac{2\pi}{9} \right)$ are \gls{constructible_real}. From the formula $\cos 3\theta = 4\cos^3 \theta - 3\cos\theta$, we see that $2\cos\left( \frac{2\pi}{9} \right)$ is a root of $f(X) = X^3 - 3X + 1$. Noting that $f(\pm 1) \neq 0$, and that $f$ is monic, we can use Gauss' lemma to observe that $f$ is irreducible in $\ringadjoin \QQ[X]$. Therefore $\exdeg[\fieldadj{\QQ}{\cos(2\pi/9)} : \QQ] = 3$, which is not a power of 2. So this construction is impossible. \end{enumerate}