%! TEX root = Galois.tex % vim: tw=50 % 25/11/2023 12PM Now we want to prove uniqueness of \glspl{alg_closure}. \begin{flashcard}[kembedding-into-alg-closure] \begin{proposition} % Proposition 11.2 \label{kembedding_into_alg_closure} Let $L \extendover K$ be an \gls{alg_ex} \gls{ex} and $M \extendover K$ be a \gls{field_ex} with $M$ \gls{alg_closed}. Then there exists a \Kembedding{K} $L \hookrightarrow M$. \end{proposition} \begin{proof} \cloze{ Let \[ S = \{(F, \sigma) : (\sigma : F \hookrightarrow M) \text{ a \Kembedding{K}}, K \subset F \subset L\} ,\] with \gls{porder} $(F_1, \sigma_1) \le (F_2, \sigma_2)$ if $F_1 \subset F_2$ and $\sigma_2|_{F_1} = \sigma_1$. Then $(S, \le)$ is a \gls{poset}. It is non-empty as $(K, \id) \in S$. Suppose $T = \{(F_i, \sigma_i) : i \in I\}$ is a \gls{chain} (where $I$ is some indexing set). Let $F = \bigcup_{i \in I} F_i$ (a field since $T$ is \gls{tot_orded}). Define \begin{align*} \sigma : F &\to M \\ x &\mapsto \sigma_i(x) \quad\text{if $x \in F_i$} \end{align*} This is well-defined since $\sigma_i$ and $\sigma_j$ agree on $F_i \cap F_j$ (again since $T$ is \gls{tot_orded}). Then $(F, \sigma) \in S$ is an \gls{upp_bd} for $T$. Hence by \nameref{zorn}, $S$ has a \gls{max_el} element $(F, \sigma)$. Let $\alpha \in L$. Then $\alpha$ is \gls{alg_el} over $K$, hence \gls{alg_el} over $F$. By \cref{simple_extension_sigma_hom_bijection}, we may extend $\sigma : F \hookrightarrow M$ to $\tau : \fadj F(\alpha) \hookrightarrow M$ (using here that $M$ is \gls{alg_closed}). Then $(F, \sigma) \le (\fadj F(\alpha), \tau)$. Since $(F, \sigma)$ is \gls{max_el}, we must have $\fadj F(\alpha) = F$, so $\alpha \in F$. Therefore $F = L$ and $\sigma : L \hookrightarrow M$ is a \Kembedding{K} as required. } \end{proof} \end{flashcard} \begin{flashcard}[uniqueness-of-alg-closure] \begin{corollary}[Uniqueness of algebraic closure] % Corollary 11.3 \cloze{ Let $K$ be a \gls{field}. Let $L_1$ and $L_2$ be \gls{alg_closure} of $K$. Then there exists a \Kisom{K} $\phi : L_1 \simeqto L_2$.} \end{corollary} \fcscrap{ \begin{note*} $\phi$ is not necessarily unique. \end{note*} } \begin{proof} \cloze{Since $L_1 \extendover K$ is \gls{alg_ex} and $L_2 \extendover K$ is a \gls{field_ex} with $L_2$ \gls{alg_closed}, \cref{kembedding_into_alg_closure} gives a \Kembedding{K} $\phi : L_1 \hookrightarrow L_2$. Any $\alpha \in L_2$ is \gls{alg_el} over $K$, hence \gls{alg_el} over $\phi(L_1)$. But $\phi(L_1) \cong L_1$ is \gls{alg_closed}, and therefore $\alpha \in \phi(L_1)$. This shows that $\phi$ is surjective.} \end{proof} \end{flashcard} \newpage \section{Artin's Theorem} \begin{flashcard}[artins-thm-on-invts] \begin{theorem}[Artin's Theorem on Invariants] % Theorem 12.2 \label{artins_thm} \cloze{ Let $L$ be a \gls{field} and $G \subset \Aut(L)$ a finite subgroup. Then $L \extendover \fixedf L^G$ is a \gls{finite_ex} \gls{galois} \gls{ex} with \gls{galois_group} $G$. In particular, \[ \exdeg[L : \fixedf L^G] = \#G .\] } \end{theorem} \fcscrap{ \begin{remark*} Let $K = \fixedf L^G$. Then $G \subset \Aut(L \extendover K)$ and \[ K \subset \fixedf L^{\Aut(L \extendover K)} \subset \fixedf L^G = K .\] Therefore $K = \fixedf L^{\Aut(L / K)}$. \textit{If} we knew $L \extendover K$ is \gls{alg_ex}, then it would follow (by definition) that $L \extendover K$ is \gls{galois}. \textit{If} moreover we knew $L \extendover K$ is \gls{finite_ex} then \[ \fixedf L^G = \fixedf L^{\Gal(L \extendover K)} \stackrel{\text{\cref{ft_of_gal}}}{\implies} G = \Gal(L \extendover K) .\] \end{remark*} } \begin{proof} \cloze{ Let $K = \fixedf L^G$. Pick any $\alpha \in L$. Let \[ f(X) = \prod_{i = 1}^m (X - \alpha_i) \] where $\alpha_1, \ldots, \alpha_m$ are the distinct elements of $\orb_G(\alpha) = \{\sigma(\alpha) : \sigma \in G\}$. Then $\sigma f = f$ for all $\sigma \in G$, hence $f \in \radj K[X]$. Therefore $\alpha$ is \gls{alg_el} and \gls{sep_el} over $K$. Hence $L \extendover K$ is \gls{alg_ex} and \gls{sep_ex} and \[ \exdeg[\fadj K(\alpha) : K] \le \#G \qquad \forall \alpha \in L .\] Now pick $\alpha \in L$ with $\exdeg[\fadj K(\alpha) : K]$ maximal. \textbf{Claim:} $L = \fadj K(\alpha)$. \textit{Proof of Claim:} Let $\beta \in L$. Then $\fadj K(\alpha, \beta) \extendover K$ is \gls{finite_ex} and \gls{sep_ex} so by \nameref{prim_el_thm}, $\fadj K(\alpha, \beta) = \fadj K(\theta)$ for some $\theta \in L$. By our choice of $\alpha$, \[ \exdeg[\fadj K(\theta) : K] \le \exdeg[\fadj K(\alpha) : K] .\] Since $\fadj K(\alpha) \subset \fadj K(\theta)$, this gives $\fadj K(\alpha) = \fadj K(\theta)$ and hence $\beta \in \fadj K(\alpha)$. This proves the claim. Now \[ \#\Aut(L \extendover K) \le \exdeg[L : K] = \exdeg[\fadj K(\alpha) : K] \le \# G .\] Since $G \subset \Aut(L \extendover K)$, it follows that \[ \#\Aut(L \extendover K) = \exdeg[L : K] ,\] so by \cref{classification_of_finite_galois_extensions}, $L \extendover K$ is \gls{galois} and $G = \Aut(L \extendover K)$. } \end{proof} \end{flashcard} \begin{example*} Let $L = \fadj \CC(X_1, X_2)$. Define $\sigma, \tau \in \Aut(L)$ by \begin{align*} (\sigma f)(X_1, X_2) &= f(i X_1, -iX_2) \\ (\tau f)(X_1, X_2) &= f(X_2, X_1) \end{align*} Let $G = \langle \sigma, \tau \rangle \cong D_8$. Aim: compute $\fixedf L^G$. We spot that $X_1 X_2, X_1^4 + X_2^4 \in \fixedf L^G$. So we have: \begin{center} \begin{tikzcd} L \ar[no head]{d}{8} \ar[swap,no head,bend right=60]{dd}{\le 8} \\ \fixedf L^G \ar[no head]{d} \\ \fadj \CC(X_1 X_2, X_1^4 + X_2^4) \end{tikzcd} \end{center} Let \[ f(T) = (T^4 - X_1^4)(T^4 - X_2^4) = T^8 - (X_1^4 + X_2^4)T^4 + (X_1 X_2)^4 \in \radj \fadj \CC(X_1 X_2, X_1^4 + X_2^4)[T] \] hence \[ \exdeg[L : \fadj \CC(X_1 X_2, X_1^4 + X_2^4)] \le 8 \] Then \nameref{artins_thm} implies $\exdeg[L : \fixedf L^G] = \#G = 8$. Then by the \nameref{tower_law}, \[ \fixedf L^G = \fadj \CC(X_1 X_2, X_1^4 + X_2^4) .\] \end{example*}