%! TEX root = Galois.tex % vim: tw=50 % 23/11/2023 12PM \newpage \section{Algebraic Closure} \begin{lemma*}[Zorn's Lemma] \label{zorn} Let $S$ be a nonempty partially ordered set. Assume that every chain in $S$ has an upper bound. Then $S$ has a maximal element. \end{lemma*} \begin{definition*} A relation $\le $ on a set $S$ is a partial order if for all $x, y, z \in S$: \begin{enumerate}[(i)] \item $x \le x$. \item If $x \le y$ and $y \le z$ then $x \le z$. \item If $x \le y \le z$ and $y \le x$ then $x = y$. \end{enumerate} \glsnoundefn{poset}{partially ordered set}{partially ordered sets} \glsnoundefn{porder}{partial order}{N/A} $(S, \le)$ is called a \emph{partially ordered set} (or poset). \glsadjdefn{tot_orded}{totally ordered}{\gls{poset}}% It is \emph{totally ordered} if moreover for each $x, y \in S$ \begin{enumerate}[(i)] \setcounter{enumi}{3} \item Either $x \le y$ or $y \le x$. \end{enumerate} Let $T \subset S$ be a subset. \begin{itemize} \item \glsnoundefn{chain}{chain}{chains}% $T$ is a \emph{chain} if it is totally ordered by $\le$. \item \glsnoundefn{upp_bd}{upper bound}{upper bounds}% $x \in S$ is an \emph{upper bound} for $T$ if $t \le x$ for all $t \in T$. \item \glsadjdefn{max_el}{maximal}{element}% $x \in S$ is \emph{maximal} if $\nexists y \in S$ with $x \le y$ and $x \neq y$. \end{itemize} \end{definition*} \begin{example*} Let $V$ be a vector space and $(S, \le)$ be the set of linearly independent subsets of $V$ ordered by inclusion. If $T \subset S$ is a \gls{chain} then let $Y = \bigcup_{X \in T} X$. It may be checked that $Y$ is linearly independent, hence an upper bound for $T$. \nameref{zorn} shows that $S$ has a \gls{max_el} $B$. Then: \begin{enumerate}[(i)] \item $B$ is linearly independent. \item $B \cup \{v\}$ is not linearly independent for any $v \in V \setminus B$. \end{enumerate} (i) and (ii) $\implies$ $B$ spans $V$. Therefore $B$ is a basis for $V$. \end{example*} \begin{example*}[Maximal ideal] \refstepcounter{customlink} \label{max_ideal_example} Let $R$ be a nonzero ring. Let $(S, \le)$ be the set of all proper (ie $\neq R$) ideals of $R$ ordered by inclusion. $R$ nonzero implies $\{0\} \in S$ so $S$ is nonempty. If $T \subset S$ is a \gls{chain} then let $J = \bigcup_{I \in T} I$. If $x, y \in J$ then $x \in I_1$ and $y \in I_2$ for some $I_1, I_2 \in T$. Since $T$ is \gls{tot_orded}, either $I_1 \subset I_2$ or $I_2 \subset I_1$. Therefore $x + y \in J$. Also, $r \in R$, $x \in J$ implies $rx \in J$. So $J$ is an ideal in $R$. It is a proper ideal since $1 \notin J$. Therefore $J \in S$ is an upper bound for $T$. \nameref{zorn} shows that $S$ has a \gls{max_el}, hence $R$ has a maximal ideal. \end{example*} \begin{flashcard}[algebraic-closure-existence-thm] \begin{theorem}[Existence of algebraic closure] % Theorem 11.1 \cloze{ Let $K$ be a \gls{field}. Then \begin{enumerate}[(i)] \item There is an \gls{alg_ex} \gls{ex} $L \extendover K$ such that every nonconstant $f \in \radj K[X]$ has a root in $L$. \item $K$ has an \gls{alg_closure} $\algclos{K}$. \end{enumerate} } \end{theorem} \begin{proof} \phantom{} \cloze{ \begin{enumerate}[(i)] \item Let $S = \{\text{monic constant polynomials in $\radj K[X]$}\}$. Rough idea: $L = \fadj K(\alpha_f : f \in S)$ where $\alpha_f$ is a root of $f$. In detail: Let $R = \radj K[X_f : f \in S]$ be the polynomial ring in indeterminates $\{X_f : f \in S\}$. So elements of $R$ are finite $K$-linear combinations of monomials of the form $X_{f_1}^{d_1} X_{f_2}^{d_2} \cdots X_{f_r}^{d_r}$ where $f_i \in S$ and $d_i \in \NN$. Let $I \subset R$ be the ideal generated by $\{f(X_f) : f \in S\}$. \textbf{Claim:} $I \neq R$. \textit{Proof of claim:} If not then $1 \in I$, i.e. \[ 1 = \sum_{f \in T} g_f f(X_f) \tag{$*$} \label{lec22_l125_eq} \] for some finite subset $T \subset S$ and polynomials $g_f \in R$. Let $L \extendover K$ be a \gls{splitting_field} for $\prod_{f \in T} f$ and for each $f \in T$, let $\alpha_f \in L$ be a root of $f$. We define a ring homomorphism \begin{align*} \phi : R &\to \radj L[X_f : f \in S \setminus T] \\ X_f &\mapsto \begin{cases} \alpha_f & f \in T \\ X_f & f \notin T \end{cases} \\ c &\mapsto c \qquad \forall c \in K \end{align*} Applying $\phi$ to \eqref{lec22_l125_eq} gives \[ 1 = \sum_{f \in T} \phi(g_f) \ub{f(\alpha_f)}_{= 0} = 0 \] which gives a contradiction. Hence $I \neq R$, which proves the claim. Since $I \neq R$, by the earlier example (\nameref{max_ideal_example}), we get that $R / I$ has a maximal ideal, so equivalently $R$ has a maximal ideal $J$ containing $I$. Let $L = R / J$ and $\alpha_j = X_j + J \in L$. Then $f(\alpha_f) = 0$ (since $f(X_f) \in I \subset J$). Since \[ L = \bigcup_{\substack{T \subset S \text{ finite} \\ \text{subsets}}} \fadj K(\alpha_f : f \in T) \] it follows that $L \extendover K$ is an \gls{alg_ex} \gls{ex}. \item Repeating the construction in (i) gives \[ K \subset K_1 \subset K_2 \subset \cdots \] Each nonconstant polynomial in $\radj K_n[X]$ has a root in $K_{n + 1}$. If $f \in \radj K[X]$ has degree $n \ge 1$ then is has a root $\alpha_1$ in $K_1$. Then $\frac{f(X)}{X - \alpha_1}$ is either a constant, or a nonconstant polynomial, hence has a root $\alpha_2$ in $K_2$, and so on, so that $f$ splits into linear factors in $K_n$. Let \[ \algclos{K} = \bigcup_{n \ge 1} K_n .\] This is a field since it is a union of fields \gls{tot_orded} by inclusion. Then every polynomial in $\radj K[X]$ splits into linear factors over $\algclos{K}$, and each element of $\algclos{K}$ belongs to some $K_n$, so is \gls{alg_ex} over $K$. Now apply \cref{alg_closed_extension_lemma}. \qedhere \end{enumerate} } \end{proof} \end{flashcard}