%! TEX root = Galois.tex % vim: tw=50 % 21/11/2023 12PM \begin{flashcard}[Kummer-thm] \begin{theorem}[Kummer] % Theorem 10.8 \cloze{Assume $\characteristic K \nmid n$ and $\runities_n \subset K$. Then every \gls{ex_deg} $n$ \gls{galois} \gls{ex} $L \extendover K$ with cyclic \gls{galois_group} is of the form $L = \fadj K(\sqrt[n]{a})$ for some $a \in \mult{K}$.} \end{theorem} \begin{proof} \cloze{Write $\Gal(L \extendover K) = \{\sigma^i : 0 \le i < n\}$. By \cref{lindep_of_fembeddings}, there exists $x \in L$ such that \[ \ub{\sum_{j = 0}^{n - 1} \runity_n^j \sigma^{j(x)}}_{= \alpha} \neq 0 \] (Lagrange resolvent). Then \[ \sigma(\alpha) = \sum_{j = 0}^{n - 1} \runity_n^j \sigma^{j + 1}(x) = \sum_{j = 0}^{n - 1} \runity_n^{j - 1} \sigma^j(x) = \runity_n^{-1} \alpha \] The Galois conjugates $\sigma^j(\alpha) = \runity_n^{-j} \alpha$. So $\exdeg[\fadj K(\alpha) : K] = n$ and $L = \fadj K(\alpha)$. Finally $\sigma(\alpha^n) = (\runity_n^{-1} \alpha)^n = \alpha^n$, so $\alpha^n \in K$.} \end{proof} \end{flashcard} Now let $K$ be a \gls{field} with $\characteristic K = 0$. Let $f \in \radj K[X]$ be a polynomial. \begin{flashcard}[soluble-by-radicals] \begin{definition*}[Soluble by radicals] \glsadjdefn{sol_rad}{soluble by radicals}{polynomial} \cloze{$f$ is \emph{soluble by radicals} over $K$ if there exist fields \[ K = K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_m \] such that $f$ has a root in $K_m$ and for each $1 \le i \le m$, $K_i = \fadj K_{i - 1}(\alpha_i)$ with $\alpha_i^{d_i} \in K_{i - 1}$ for some $d_i \ge 1$.} \end{definition*} \end{flashcard} \begin{flashcard}[soluble-group] \begin{definition*}[Soluble group] \glsadjdefn{sol_gp}{soluble}{group} \cloze{A finite group $G$ is \emph{soluble} if there exist subgroups \[ \{1\} = H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_m = G \] such that for each $1 \le i \le m$, $H_{i - 1} \normalsub H_i$ and $H_i / H_{i - 1}$ is abelian.} \end{definition*} \end{flashcard} \begin{remark*} The definition is unchanged if we replace ``abelian'' by ``cyclic'' or ``cyclic of prime order''. \end{remark*} \begin{example*} $S_4$ is soluble: \[ \{1\} \subset V \subset A_4 \subset S_4 \] with $V \cong C_2 \times C_2$, $A_4 / V \cong C_3$, $S_4 / A_4 \cong C_2$. \end{example*} \begin{lemma} % Lemma 10.9 \label{subgp_and_quot_of_sol_is_sol} If $G$ is soluble then so is every subgroup and quotient of $G$. \end{lemma} \begin{proof} Exercise (\es[7]{4}). \end{proof} \begin{flashcard}[f-soluble-if-gal-soluble] \begin{theorem} % Theorem 10.10 \label{f_soluble_iff_gal_soluble} Let $f \in \radj K[X]$ irreducible. Then \[ \text{$f$ is \gls{sol_rad}} \iff \cloze{\text{$\Galpoly(f \galover K)$ is \gls{sol_gp}}} \] \end{theorem} \end{flashcard} \begin{flashcard}[f-adj-roots-of-gal-conjs-is-gal] \begin{lemma} % Lemma 10.11 \label{f_adj_roots_of_gal_conjs_is_gal} Let $L \extendover K$ be a \gls{finite_ex} \gls{galois} \gls{ex}. \cloze{Let \[ \Gal(L \extendover K) = \{\sigma_1, \ldots, \sigma_m\} \] (say $\sigma_1 = \id$).} Let $a \in \mult{L}$ and $n \ge 1$. Then \[ M = \cloze{\fadj L (\runities_n, \sqrt[n]{\sigma_1(a)}, \ldots, \sqrt[n]{\sigma_m(a)})} \] is a \gls{galois} \gls{ex} of $K$. \end{lemma} \begin{proof} \cloze{Let \[ f(X) = \prod_{i = 1}^m (X^n - \sigma_i(a)) \in \radj K[X] \] Then $m$ is the \gls{comp_field} of $L$ and the \gls{splitting_field} of $f$ over $K$. Therefore $M \extendover K$ is \gls{galois} by \cref{comp_subf_gal_thm}(ii).} \end{proof} \end{flashcard} \begin{flashcard}[proof-of-f-sol-iff-gal-sol] \prompt{Proof that $f$ (irreducible) soluble if and only if $\Galpoly(f \galover K)$ soluble?} \begin{proof}[Proof of \cref{f_soluble_iff_gal_soluble}] \phantom{} \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] \cloze{By definition there exist \glspl{field} $K = K_0 \subset K_1 \subset \cdots K_m$ such that $f$ has a root in $K_m$ and for each $1 \le i \le m$, $K_i = K_{i - 1}(\alpha_i)$ with $\alpha_i^{d_i} \in K_{i - 1}$ for some $d_i \ge 1$. Repeatedly applying \cref{f_adj_roots_of_gal_conjs_is_gal}, we may assume $K_m \extendover K$ is \gls{galois}. By adjoining suitable \glsref[prim_n_root]{roots of unity} first, we may further assume each $K_i \extendover K_{i - 1}$ is either \gls{cycl_ex} or \glsref[kumm_ex]{Kummer}. By \cref{cyclotomic_ex_hom_thm} and \cref{kummer_gal_is_cyclic} each $\Gal(K_i \extendover K_{i - 1})$ is abelian. So by the \nameref{ft_of_gal}, $\Gal(K_m \extendover K)$ is soluble. Since $f$ has a root in $K_m$ and $K_m \extendover K$ is \gls{norm_ex}, we know that $f$ slpits in $K_m$. Therefore $\Galpoly(f \galover K)$ is a quotient of $\Gal(K_m \extendover K)$, and hence $\Galpoly(f \galover K)$ is \gls{sol_gp} by \cref{subgp_and_quot_of_sol_is_sol}.} \item[$\Leftarrow$] \cloze{By the \hyperref{ft_of_gal}{Galois correspondence} there exists $K = K_0 \subset K_1 \subset \cdots \subset K_m$ such that $f$ has a root in $K_m$ and each $K_i \extendover K_{i - 1}$ is \gls{galois} with cyclic \gls{galois_group}. Let $n = \lcm_{1 \le i \le m} \exdeg [K_i : K_{i - 1}]$. Then \[ K = K_0 \subset \fadj K_0(\runity_n) \subset \fadj K_1(\runity_n) \subset \cdots \subset \fadj K_m(\runity_n) \] By \cref{comp_subf_gal_thm}(i), $\fadj K_i(\runity_n) \extendover \fadj K_{i - 1}(\runity_n)$ is \gls{galois} and \[ \Gal(\fadj K_i(\runity_n) \extendover \fadj K_{i - 1}(\runity_n)) \hookrightarrow \Gal(K_i \extendover K_{i - 1}) \] Therefore $\Gal(\fadj K_i(\runity_n) \extendover \fadj K_{i - 1}(\runity_n))$ is cyclic of order dividing $n$.\qedhere} \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[poly-gal-gp-Sn-or-An-not-sol] \begin{corollary} % Corollary 10.12 If $f \in \radj K[X]$ is a polynomial of degree $n \ge 5$ with \gls{galois_group} $A_n$ or $S_n$, then $f$ is \emph{not} \gls{sol_rad} over $K$. \end{corollary} \begin{proof} \cloze{$A_5$ is non abelian and simple, hence not \gls{sol_gp}. By \cref{subgp_and_quot_of_sol_is_sol}, $A_n$ and $S_n$ are not soluble for all $n \ge 5$\fcscrap{ (in fact $A_n$ is simple for all $n \ge 5$)}.} \end{proof} \end{flashcard} \begin{example*} $K = \QQ$, $f(X) = X^5 - X + a$, with $a \in \ZZ$, $\gcd(a, 10) = 1$. Then \[ f \equiv X^5 + X + 1 = (X^2 + X + 1)(X^3 + X^2 + 1) \pmod{2} .\] Therefore $\Galpoly(f \galover \QQ)$ contains an element $\sigma$ with cycle type $(2, 3)$. Then $\sigma^3$ is a transposition. Using the trick in \es[5]{4}, we find $\modred{f} \in \FF_5[X]$ is irreducible, hence $\Galpoly(f \galover \QQ)$ contains a $5$-cycle. Now \es[7(i)]{3}: Let $p$ be a prime. If $G \subset S_p$ is a subgroup containing both a $p$-cycle and a transposition, then $G = S_p$. Therefore $\Galpoly(f \galover \QQ) = S_5$ and $f$ is not \gls{sol_rad}. \end{example*}