%! TEX root = Galois.tex % vim: tw=50 % 18/11/2023 12PM \begin{corollary*} % Corollary 10.5 -- dodgy numbering so removed % this A regular $n$-hon is \glsref[constructible_point]{constructible by ruler and compass} if and only if $n$ is a power of $2$ and distinct primes of the form $F_k = 2^{2^k} + 1$. \end{corollary*} \begin{proof} If $n = \prod_i p_i^{\alpha_i}$ then \[ \phi(n) = \prod_i p_i^{\alpha_i - 1} (p_i - 1) \] so $\phi(n)$ is a power of $2$ if and only if $n$ is a product of a power of $2$ and distinct odd primes of the form $2^m + 1$. If $2^m + 1$ is prime then $m$ must be a power of $2$. Indeed if $m = ab$ with $b > 1$ odd, then putting $x = 2^a$ in \[ x^b + 1 = (x + 1)(x^{b - 1} - x^{b - 2} + \cdots - x + 1) \] gives a non-trivial factorisation. \end{proof} \begin{center} \begin{tabular}{c|ccccc} $k$ & $0$ & $1$ & $2$ & $3$ & $4$ \\ \hline $F_k = 2^{2^k} + 1$ & $3$ & $5$ & $17$ & $257$ & $65537$ \end{tabular} \end{center} $F_0, \ldots, F_4$ are all prime. This prompted Fermat to guess that all the $F_k$ might be prime. However in 1732 Euler showed that \[ F_5 = 641 \times 6700417 .\] Since then many other Fermat numbers have been proved composite and no more have been shown to be prime. \begin{flashcard} \begin{theorem}[Linear independence of field embeddings] % Theorem 10.5 \label{lindep_of_fembeddings} \cloze{ Let $K, L$ be \glspl{field} and $\sigma_1, \ldots, \sigma_n : K \hookrightarrow L$ distinct \gls{field} \glspl{embedding} ($n \ge 1$). If $\lambda_1, \ldots, \lambda_n \in L$ satisfy \[ \lambda_1 \sigma_1(x) + \cdots + \lambda_n \sigma_n(x) = 0 \qquad \forall x \in K \] then $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$. } \end{theorem} \begin{proof} \cloze{ Induction on $n$. Trivially true for $n = 1$. Now suppose $n \ge 2$ and \[ \lambda_1 \sigma_1(x) + \cdots + \lambda_n \sigma_n(x) = 0 \qquad \forall x \in K \label{lec20_l67_eq} \tag{1} .\] Pick $y \in K$ such that $\sigma_1(y) \neq \sigma_2(y)$. Replacing $x$ by $xy$ in \eqref{lec20_l67_eq} gives \[ \lambda_1 \sigma_1(x) \sigma_1(y) + \cdots + \lambda_n \sigma_n(x) \sigma_n(y) = 0 \qquad \forall x \in K \label{lec20_l73_eq} \tag{2} \] Taking $\sigma_1(y) \times \eqref{lec20_l67_eq} - \eqref{lec20_l73_eq}$ gives a new relation with only $n - 1$ terms. It must be trivial by the induction hypothesis. Therefore $\sigma_1(y) \lambda_i = \sigma_i(y) \lambda_i$ for all $2 \le i \le n$. Since $\sigma_1(y) \neq \sigma_2(y)$ we have $\lambda_2 = 0$. Therefore \eqref{lec20_l67_eq} has only $n - 1$ terms, so the induction hypothesis tells us that all $\lambda_i = 0$. } \end{proof} \end{flashcard} \subsection{Kummer Theory} We continue to assume $\characteristic K \nmid n$, but now further assume that $\runities_n \subset K$, i.e. $K$ contains a \gls{prim_n_root} $\runity_n$. Let $\alpha \in \mult{K}$. Let $L \extendover K$ be a \gls{splitting_field} of $f(X) = X^n - a$. Since $f\fd(X) = nX^{n - 1}$ and $n 1_K \neq 0$ we have $\gcd(f, f\fd) = 1$, so $f$ is \gls{sep_poly} by \cref{classification_of_finite_galois_extensions} $L \extendover K$ is \gls{galois}. Let $\alpha \in L$ be a root of $f$. Then \[ f(X) = \prod_{j = 0}^{n - 1} (X - \runity_n^j \alpha) \] Therefore $L = \fadj K(\alpha, \runity_n \alpha, \ldots, \runity_n^{n - 1} \alpha) = \fadj K(\alpha)$. We sometimes write $\sqrt[n]{\alpha}$ for $\alpha$. \begin{flashcard}[kummer-extension-defn] \begin{definition*}[Kummer extension] \glsnoundefn{kumm_ex}{Kummer extension}{Kummer extensions} \cloze{$\fadj K(\sqrt[n]{\alpha}) \extendover K$ is called a \emph{Kummer extension}.} \end{definition*} \end{flashcard} \begin{flashcard}[kummer-gal-is-cyclic] \begin{theorem} % Theorem 10.6 \label{kummer_gal_is_cyclic} Assume $\runities_n \subset K$ and $a \in \mult{K}$. There is an injective group homomorphism \[ \Gal(\fadj (\sqrt[n]{a}) \extendover K) \stackrel[\theta]{}{\hookrightarrow} \runities_n \] In particular \cloze{$\Gal(\fadj K(\sqrt[n]{a}) \extendover K)$ is a cyclic group and $\exdeg[\fadj K(\sqrt[n](a)) : K]$ divides $n$.} \end{theorem} \begin{proof} \cloze{Let $G = \Gal(\fadj K(\sqrt[n]{a}) \extendover K)$. If $\sigma \in G$ then $\sqrt[n]{a}$ and hence also $\sigma(\sqrt[n]{a})$ are roots of $X^n - a$, so $\sigma(\sqrt[n]{a}) = \runity_n^r \sqrt[n]{a}$ for some $0 \le r < n$. We define \begin{align*} \theta : G &\to \runities_n \\ \sigma &\mapsto \runity_n^r = \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}} \end{align*} Now let $\sigma, \tau \in G$. Then \begin{align*} \sigma(\sqrt[n]{a}) &= \runity_n^r \sqrt[n]{a} \\ \tau(\sqrt[n]{a}) &= \runity_n^s \sqrt[n]{a} \end{align*} Then \[ \sigma \tau(\sqrt[n]{\alpha}) = \sigma(\runity_n^s \sqrt[n]{a}) = \runity_n^{r + s} \sqrt[n]{a} \] So $\theta(\sigma \tau) = \runity^{r + s} = \runity_n^r \runity_n^s = \theta(\sigma) \theta(\tau)$. Therefore $\theta$ is a group homomorphism. Since any $\sigma \in G$ is uniquely determined by $\sigma(\sqrt[n]{a})$, it is clear that $\theta$ is injective.} \end{proof} \end{flashcard} \begin{remark*} The definition of $\theta$ does not depend on the choice of $\sqrt[n]{a}$. Indeed if $\alpha^n = \beta^n = a$, then \begin{align*} \left( \frac{\alpha}{\beta} \right)^n = 1 &\implies \frac{\alpha}{\beta} \in \runities_n \subset K \\ &\implies \sigma \left( \frac{\alpha}{\beta} \right) = \frac{\alpha}{\beta} \qquad \forall \sigma \in G \\ &\implies \frac{\sigma(\alpha)}{\alpha} = \frac{\sigma(\beta)}{\beta} \qquad \forall \sigma \in G \end{align*} \end{remark*} \begin{flashcard}[mult-n-notation] \begin{notation*} \glssymboldefn{multn}{$(K^*)^n$}{$(K^*)^n$} \[ (\mult{K})^n = \{x^n : x \in \mult{K}\} \subset \mult{K} .\] This is a subgroup since $\mult{K}$ is abelian. \end{notation*} \end{flashcard} \begin{flashcard}[Xn-a-irred-iff-coro] \begin{corollary} % Corollary 10.7 Assume $\runities_n \subset K$ and $a \in \mult{K}$. Then \[ \exdeg[\fadj K(\sqrt[n]{a}) : K] = \text{order of $a$ in $\frac{\mult{K}}{\multn{K}}$} .\] In particular \cloze{$X^n - a$ is irreducible in $\radj K[X]$ if and only if $a$ is not an $a$-th power in $K$ for any $1 < d \mid n$.} \end{corollary} \begin{proof} \cloze{Let $\alpha = \sqrt[n]{a}$ and $G = \Gal(\fadj K(\alpha) \extendover K)$. \begin{align*} a^m \in \multn{K} &\iff a^m \in \mult{K} &&\text{(using $\runities_n \subset K$)} \\ &\iff \sigma(\alpha^m) = \alpha^m &&\forall \sigma \in G \\ &\iff \theta(\sigma)^m = 1 &&\forall \sigma \in G \\ &\iff \Im \theta \subset \runities_m \\ &\iff \exdeg[\fadj K(\alpha) : K] = \#\Im(\theta) \text{ divides $m$} \end{align*} Therefore $\exdeg[\fadj K(\alpha) : K]$ is the least $m$ such that $a^m \in \multn{K}$. Now: \begin{align*} \text{$X^n - a$ is irreducible in $\radj K[X]$} &\iff \exdeg[\fadj K(\alpha) : K] = n \\ &\iff \text{$a$ has order $n$ in $\frac{\mult{K}}{\multn{K}}$} \\ &\iff \nexists m \mid n, m < n \text{ such that $a^m \in \multn{K}$} \\ &\iff \nexists 1 < d \mid n \text{ with $a \in \multn[d]{K}$} \end{align*} (the last $\iff$ is by putting $n = md$ and use that $\mu_n \subset K$).} \end{proof} \end{flashcard} Special case: $n = 2$, $\characteristic K \neq 2$. Then $\exdeg[\fadj K(\sqrt{a}) : K] = 2$ provided $a \notin \multn[2]{K}$.