%! TEX root = Galois.tex % vim: tw=50 % 07/10/2023 12AM \begin{flashcard}[Frobenius-homomorphism-prop] \begin{proposition}[Frobenius ring homomorphism] % Proposition 1.4 \label{frob_hom_prop} \glsdefn{frob_hom}{Frobenius homomorphism}{N/A} \cloze{ Let $R$ be a ring of characteristic $p$ ($p$ a prime). Then the \emph{Frobenius} $\phi : R \to R$, $x \mapsto x^p$ is a ring homomorphism. } \end{proposition} \begin{proof} \cloze{ Clearly $\phi(1) = 1$ and $\phi(xy) = \phi(x) \phi(y)$. Also, \[ (X + y)^p = x^p + y^p + \sum_{r = 1}^{p - 1} {p \choose r} x^{p - r} y^r \] For $1 \le r \le p - 1$ the binomial coefficient ${p \choose r} = \frac{p!}{r!(p - r)!}$ is divisible by $p$ (since $p$ is prime). Therefore $\phi(x + y) = (x + y)^p = x^p + y^p = \phi(x) + \phi(y)$. } \end{proof} \end{flashcard} \begin{remark*} We have $\phi(a) = a$ for all $a \in \FF_p \subset R$ (proof by induction on $a$), which implies $a^p \equiv a \pmod{p}$ for all integers $a$ (Fermat's Little Theorem). \end{remark*} \begin{flashcard}[tower-law-thm] \begin{theorem}[Tower Law] \label{tower_law} \cloze{ Let $M \extendover L$ and $L \extendover K$ be \glspl{field_ex}. Then $M \extendover K$ is \gls{finite_ex} if and only if $M \extendover L$ and $L \extendover K$ are \gls{finite_ex}. In this case, \[ \degover{M}{K} = \degover{M}{L}\degover{L}{K} \] } \end{theorem} \begin{proof} \cloze{ The forwards direction holds since any $K$-basis for $M$ spans $M$ as an $L$-vector space, and $L$ is a $K$-vector subspace of $M$. We now suppose that $M \extendover L$ and $L \extendover K$ are \gls{finite_ex}, say $v_1, \ldots, v_n$ is a $K$-basis for $L$, $w_1, \ldots, w_m$ is a $L$-basis for $M$. We claim that $\{v_i w_j\}_{\substack{1 \le i \le n \\ 1 \le j \le m}}$ is a $K$-basis for $M$. \begin{enumerate}[(spanning)] \item[(spanning)] If $x \in M$ then $x = \sum_j \lambda_j w_j$ for some $\lambda_j \in L$ and $\lambda_j = \sum_i \mu_{ij} v_i$ for some $\mu_{ij} \in K$. Therefore $x = \sum_{i, j} \mu_{ij} v_i w_j$. \item[(independent)] Suppose $\sum_{i, j} \mu_{ij} v_i w_i = 0$ for some $\mu_{ij} \in K$. Then \[ \sum_j \ub{\left( \sum_i \mu_{ij} v_i \right)}_{\in L} w_j = 0 \] $w_1, \ldots, w_m$ are linearly independent over $L$ so $\sum_i \mu_{ij} v_i = 0$ for all $j$. Also, $v_1, \ldots, v_n$ are linearly independent over $K$ so $\mu_{ij} = 0$ for all $i, j$. \end{enumerate} This $K$-basis for $M$ then easily implies the desired result. } \end{proof} \end{flashcard} \begin{flashcard}[bracket-extension-defn] \begin{definition} \glssymboldefn{field_adj}{smallest field containing}{$K(\alpha)$} \glssymboldefn{ring_adj}{smallest ring containing}{$K[\alpha]$} \label{bracket_extension_defn} Let $L \extendover K$ be a \gls{field_ex}. Let $\alpha_1, \ldots, \alpha_n \in L$.\cloze{ \[ K[\alpha_1, \ldots, \alpha_n] = \{f(\alpha_1, \ldots, \alpha_n) \mid f \in K[X_1, \ldots, X_n]\} \] This is the smallest \fcemph{subring} of $L$ to contain $K$ and $\alpha_1, \ldots, \alpha_n$. \[ K(\alpha_1, \ldots, \alpha_n) = \left\{ \frac{f(\alpha_1, \ldots, \alpha_n)}{g(\alpha_1, \ldots, \alpha_n)} : f, g \in K[X_1, \ldots, X_n], g(\alpha_1, \ldots, \alpha_n) \neq 0 \right\} \] This is the smallest \fcemph{subfield} of $L$ to contain $K$ and $\alpha_1, \ldots, \alpha_n$. } \end{definition} \end{flashcard} \begin{example*} $\fieldadj{\QQ}{\sqrt{2}} = \{a + b \sqrt{2} \mid a, b \in \QQ\} \subset \RR$ (use that $\frac{1}{a + b\sqrt{2}} = \frac{a - b\sqrt{2}}{a^2 - 2b^2}$). Note that $\fieldadj{\QQ}{\sqrt{2}} = \fieldadj{\QQ}{1 + \sqrt{2}} = \glsref[field_adj_notation]{\QQ\left( \frac{17}{3 - \sqrt{2}} \right)}$ etc. \end{example*} \begin{remark*} In \cref{bracket_extension_defn}, another way to see the ``smallest'' subring / subfield exists is to take the intersection of all such subrings / subfields. \end{remark*} \vspace{-1em} \textbf{Exercise:} Check that \[ \fieldadj{K}{\alpha_1} = \fieldadj{\fieldadj{K}{\alpha_1, \ldots, \alpha_{n - 1}}}{\alpha_n} = \fieldadj{\fieldadj{K}{\alpha_1}}{\alpha_2, \ldots, \alpha_n} \] \begin{flashcard}[simple-extension-defn] \begin{definition*}[Simple extension] \glsdefn{simple_ex}{simple}{N/A} \cloze{ A \gls{field_ex} $L \extendover K$ is a \emph{simple \gls{ex}} if $L = \fieldadj{K}{\alpha}$ for some $\alpha \in L$. } \end{definition*} \end{flashcard} \begin{flashcard}[algebraic-element-and-min-poly-defn] \begin{definition}[Minimal polynomial] \glsdefn{min_poly}{minimal polynomial}{minimal polynomials} \cloze{ Let $L \extendover K$ be a \gls{field_ex} and $\alpha \in L$. Then there is a unique ring homomorphism $\phi : \ringadj{K}{X} \to L$ such that $\phi(c) = c$ for all $c \in K$ and $\phi(X) = \alpha$. Indeed, \[ \phi \left( \sum c_i X^i \right) = \sum c_i \alpha^i \] (i.e. $\phi$ is ``evaluation at $\alpha$''). Since $\ringadj{K}{X}$ is a PID, we have that $\ker(\phi) = (f)$ for some $f \in \ringadj{K}{X}$. \glsdefn{alg_el}{algebraic}{N/A} We say $\alpha$ is \emph{algebraic} over $K$ if $f \neq 0$. In this case $f$ is irreducible and unique up to multiplication by elements of $\mult{K}$. We scale $f$ so that it is monic, and call it the \emph{minimal polynomial} of $\alpha$ over $K$. It is the monic polynomial in $\ringadj{K}{X}$ of least degree with $\alpha$ as a root. } \end{definition} \end{flashcard} \vspace{-1em} By the first isomorphism theorem for rings, \[ \frac{\ringadj{K}{X}}{(f)} \cong \ringadj{K}{\alpha} \] Note that by \es[2(ii)]{1} we have that the left side is a \gls{field}. Hence $\fieldadj{K}{\alpha} = \ringadj{K}{\alpha}$. For this reason, we usually write $\fieldadj{K}{\alpha}$ instead of $\ringadj{K}{\alpha}$ in these cases. Moreover, $\degover{K(\alpha)}{K} = \deg f$, since if $\deg f = n$ then $1, \alpha, \alpha^2, \ldots, \alpha^{n - 1}$ is a $K$-basis for $\fieldadj{K}{\alpha}$. \begin{example*} $K = \QQ$, $L = \RR$, $\alpha = \sqrt[d]{2}$. $\alpha$ is a root of $f(X) = X^d - 2$, and $f$ is irreducible in $\ringadj{\ZZ}{X}$ by Eisenstein's criterion (with $p = 2$). Therefore by Gauss' Lemma it is irreducible in $\ringadj{\QQ}{X}$, so $f$ is the \gls{min_poly} of $\alpha$. So $\degover{\fieldadj{\QQ}{\sqrt[d]{2}}}{\QQ} = d$. \end{example*} \begin{remark*}[A method for computing inverse] Let $\alpha \in L$ be \gls{alg_el} over $K$ with \gls{min_poly} $f$. Let $0 \neq \beta \in \ringadj{K}{\alpha}$, say $\beta = g(\alpha)$ for some $g \in \ringadj{K}{X}$. Since $f$ is irreducible and $\beta \neq 0$, we see that $f$ and $g$ are coprime. Running Euclid's algorithm gives $r, s \in \ringadj{K}{X}$ such that $r(X)f(X) + s(X) g(X) = 1$. Plugging in $X = \alpha$, we get \[ r(\alpha)\ub{f(\alpha)}_{= 0} + s(\alpha) \ub{g(\alpha)}_{=\beta} = 1 ,\] therefore $\frac{1}{\beta} = s(\alpha)$. \end{remark*}