%! TEX root = Galois.tex % vim: tw=50 % 16/11/2023 12PM Recall that $\mult{(\ZZ / n\ZZ)} = \{a \in \ZZ / n\ZZ \st \gcd(a, n) = 1\}$ is a group under multiplication. It has order $\phi(n)$ (Euler $\phi$-function). Let $K$ be a \gls{field} with $\characteristic K \nmid n$. Let $\runity_n$ be a \gls{prim_n_root} (in some \gls{field_ex} of $K$). \begin{flashcard}[cyclotoic-ex-hom-thm] \begin{theorem} % Theorem 10.1 \label{cyclotomic_ex_hom_thm} \glssymboldefn{cyclotomic_hom}{$\chi$}{$\chi$} There is an injective group homomorphism \[ \cloze{\Gal(\fadj K(\runity_n) \extendover K) \stackrel{\chi}{\hookrightarrow} \mult{(\ZZ / n\ZZ)}} .\] In particular \cloze{$\Gal(\fadj K(\runity_n) \extendover K)$ is abelian, and }$\exdeg[\fadj K(\runity_n) : K]$ \cloze{divides $\phi(n)$}. \end{theorem} \begin{proof} \cloze{Let $G = \Gal(\fadj K(\runity_n) \extendover K)$. If $\sigma \in G$ then $\runity_n$ and hence also $\sigma(\runity_n)$ are roots of $X^n - 1$. Therefore $\sigma(\runity_n) = \runity_n^a$ for some $a \in \ZZ$. Since $\runity_n$ is a \gls{prim_n_root} the value of $a$ is unique modulo $n$. We define \begin{align*} \cychom : G &\to \ZZ / n\ZZ \\ \sigma &\mapsto a \end{align*} Noe let $\sigma, \tau \in G$ with $\sigma(\runity_n) = \runity_n^a$, $\tau(\runity_n) = \runity_n^b$. Then \[ \sigma \tau(\runity_n) = \sigma(\runity_n^b) = \runity_n^{ab} ,\] so \[ \cychom(\sigma \tau) = ab = \cychom(\sigma) \cychom(\tau) .\] In particular $\cychom(\sigma) \cychom(\sigma^{-1}) = \cychom(1) = 1$ so $\cychom(\sigma) \in \mult{(\ZZ / n\ZZ)}$ and $\cychom$ is a group homomorphism. Since any $\sigma \in G$ is uniquely determined by $\sigma(\runity_n)$ it is clear that $\cychom$ is injective.} \end{proof} \end{flashcard} \begin{remark*} If $\cychom(\sigma) = a$ then $\sigma(\runity) = \runity^a$ for all $\runity \in \runities_n$. So the definition of $\cychom$ does not depend on the choice of $\runity_n$. \end{remark*} \begin{example*} Let $p$ be a prime with $p \equiv 4 \pmod{5}$. Let $K = \FF_p$, $L = \qFF_{p^2}$ and $n = 5$. Since $5 \mid (p^2 - 1)$, there exists $\runity_5 \in L$ a primitive $5$-th root of unity. Since $5 \nmid (p - 1)$ we know $\runity_5 \notin K$. Therefore $L = K(\runity_5)$. By \cref{cyclotomic_ex_hom_thm} \[ \ub{\Gal(L \extendover K)}_{\cong C_2} \stackrel{\cychom}{\hookrightarrow} \mult{(\ZZ / 5\ZZ)} .\] Therefore $\Im(\cychom) = \{\pm 1\} \subset \mult{(\ZZ / 5\ZZ)}$. \end{example*} \begin{flashcard}[order-of-Fp-cyclotomic] \begin{corollary} % Corollary 10.2 Let $K = \FF_p$ and suppose $p \nmid n$. Then $\exdeg[\fadj K(\runity_n) : K]$ is \cloze{the order of $p$ in $\mult{(\ZZ / n\ZZ)}$.} \end{corollary} \begin{proof} \cloze{$\Gal(\fadj K(\runity_n) \extendover K)$ is generated by \gls{frob_hom} $\phi$ which sends $\runity_n \mapsto \runity_n^p$. Therefore \begin{align*} \exdeg[\fadj K(\runity_n) : K] &= \text{order of $\phi$ in $\Gal(\fadj K(\runity_n) \extendover K)$} \\ &= \text{order of $\ub{\cychom(\phi)}_{=p}$ in $\mult{(\ZZ / n\ZZ)}$} \qedhere \end{align*} } \end{proof} \end{flashcard} \begin{flashcard}[cyclotomic-poly-defn] \begin{definition*}[Cyclotomic polynomial] \glsnoundefn{cyc_poly}{cyclotomic polynomial}{cyclotomic polynomials} \glssymboldefn{cyc_poly}{$\Phi_n$}{$\Phi_n$} \cloze{Let $\runity_n = e^{2\pi i / n}$. The $n$-th \emph{cyclotomic polynomial} is \[ \Phi_n(X) = \prod_{a \in \mult{(\ZZ / n\ZZ)}} (X - \runity_n^a) .\]} \end{definition*} \end{flashcard} \vspace{-1em} Its roots are the \glspl{prim_n_root}. As $\Gal(\fadj \QQ(\runity_n) \extendover \QQ)$ permutes these, we have $\cycpoly_n \in \radj \QQ[X]$. Clearly we have $\runity^n = 1$ if and only if $\runity$ is a \gls{prim_n_root} for some $d \mid n$. Therefore \[ X^n - 1 = \prod_{d \mid n} \cycpoly_d(X) .\] It follows by induction on $n$ that $\cycpoly_n \in \radj \ZZ[X]$. \begin{example*} \begin{align*} \cycpoly_1 &= X - 1 \\ \cycpoly_p &= \frac{X^p - 1}{X - 1} = X^{p - 1} + X^{p - 2} + \cdots + X^2 + X + 1 &&\text{($p$ prime)} \\ \cycpoly_4 &= X^2 + 1 \end{align*} In general, $\deg \cycpoly_n = \phi(n)$. \end{example*} \begin{flashcard}[cyclotomic-irred-over-Q] \begin{theorem} % Theorem 10.3 \label{cyclotomic_irred_over_Q} If $K = \QQ$ then the group homomorphism $\cychom$ of \nameref{cyclotomic_ex_hom_thm} \cloze{is an isomorphism. In particular, $\exdeg[\QQ(\runity_n) : \QQ] = \phi(n)$, and $\cycpoly_n \in \radj \QQ[X]$ is irreducible.} \end{theorem} \begin{proof} \cloze{Let $p$ be a prime with $p \nmid n$. We show that $\Im \cychom$ contains $p \mod n$. If this is true then $\Im \cychom$ contains $a \mod n$ for every $a$ coprime to $n$ (by considering the prime factorisation fo $a$). Therefore $\chi$ is surjective as required. Let $f, g \in \radj \QQ[X]$ be the \glspl{min_poly} of $\runity_n$ and $\runity_n^p$ over $\QQ$. If $f = g$ then by \cref{f_irred_iff_gal_transitive} there exists $\sigma \in \Gal(\QQ(\runity_n) \extendover \QQ)$ with $\sigma(\runity_n) = \runity_n^p$ as required. If not then $f$, $g$ are distinct irreducibles dividing $X^n - 1$. So $f, g \in \radj \ZZ[X]$ (using Gauss' lemma) and $fg \mid (X^n - 1)$. Now $\runity_n$ is a root of $g(X^p)$, so $f(X) \mid g(X^p)$. Reducing modulo $p$ gives \[ \modred{f}(X) \mid \modred{g}(X^p) = \modred{g}(X)^p .\] Both $\modred{f}$ and $\modred{g}$ divide the \gls{sep_poly} polynomial $X^n - 1 \in \radj \FF_p[X]$, so $\modred{f}(X) \mid \modred{g}(X)$. Hence \[ \modred{f}(X)^2 \mid \modred{f}(X) \modred{g}(X) \mid (X^n - 1) \] which contradicts the fact that $X^n - 1 \in \radj \FF_p[X]$ is \gls{sep_poly}.} \end{proof} \end{flashcard} \begin{flashcard}[gauss-n-gon-ruler-compass-thm] \begin{theorem}[Gauss] % Theorem 10.4 Let $n \ge 3$. A regular $n$-gon is \glsref[constructible_point]{constructible by ruler and compass} if and only if \cloze{$\phi(n)$ is a power of $2$.} \end{theorem} \begin{proof} \cloze{ Let $\runity_n = e^{2\pi i / n}$ and $\alpha = \runity_n + \runity_n^{-1} = 2\cos \left( \frac{2\pi}{n} \right)$. Since $\alpha \in \RR$, $\runity \notin \RR$ and $\runity_n$ is a root of $X^2 - \alpha X + 1 \in \radj \fadj \QQ(\alpha)[X]$. We have $[\fadj \QQ(\runity_n) : \fadj \QQ(\alpha)] = 2$. If a regular $n$-gon can be \gls{constructed_point} then $\alpha$ is \gls{constructible_real}. Now \cref{constructible_requires_power_of_2} implies that $\exdeg[\fadj \QQ(\alpha) : \QQ]$ is a power of $2$. By \cref{cyclotomic_irred_over_Q}, $\phi(n) = \exdeg[\fadj \QQ(\runity_n) : \QQ] = 2\exdeg[\fadj \QQ(\alpha) : \QQ]$ is a power of $2$. For the converse we use the converse of \cref{compass_construction_is_constructible_field} (proof omitted). It remains to show that if $\phi(n)$ is a power of $2$ there there exist fields \[ \QQ = K_m \subset K_{m - 1} \subset \cdots \subset K_1 \subset K_0 = \fadj \QQ(\runity_n) \] where $\exdeg[K_i : K_{i + 1}] = 2$ for all $i$ and $K_1 = \fadj \QQ(\alpha)$. By the \nameref{ft_of_gal}, it suffices to construct subgroups \[ \{1\} = H_0 \subset H_1 \subset \cdots \subset H_{m - 1} \subset H_m = \mult{(\ZZ / n\ZZ)} \] where $(H_i : H_{i - 1}) = 2$ for all $i$, and $H_1 = \{\pm 1\}$. We must show that if $G = \mult{(\ZZ / n\ZZ)}$ is an abelian group with order a power of $2$ then there exist subgroups $\{1\} = H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_m = G$ such that $(H_i : H_{i - 1}) = 2$ for all $i$. Assuming $H_0, H_1, \ldots, H_j$ have been constructed, and $H_j \neq G$, we note that $G / H_j$ has order a power of $2$ hence contains an element $gH_j$ of order $2$. Then set $H_{j + 1} = \langle H_j, g \rangle$ and repeat. } \end{proof} \end{flashcard}