%! TEX root = Galois.tex % vim: tw=50 % 14/11/2023 12PM \begin{flashcard}[reduction-mod-p-thm] \begin{theorem}[``Reduction modulo $p$''] % Theorem 9.6 \label{red_mod_p_thm} \glssymboldefn{modred}{$\ol{f}$}{$\ol{f}$} \cloze{Let $f \in \radj \ZZ[X]$ be a monic \gls{sep_poly} polynomial of degree $n \ge 1$. Let $p$ be a prime and suppose the reduction of $f$ modulo $p$, say $\modred{f} \in \radj \FF_p[X]$ is also \gls{sep_poly}. Then $\Galpoly(\modred{f} \galover \FF_p) \subset \Galpoly(f \galover \QQ)$ as subgroups of $S_N$ (up to conjugacy).} \end{theorem} \end{flashcard} \begin{proof}[Proof (non-examinable)] See below. \end{proof} \begin{flashcard}[reduction-mod-p-factors-lemma] \begin{corollary} % Corollary 9.7 With the same assumptions, suppose $\modred{f} = g_1 g_2 \cdots g_r$ \cloze{where $g_i \in \radj \FF_p[X]$ is irreducible of degree $n_i$. Then $\Galpoly(f \galover \QQ) \subset S_n$ contains an element with cycle type $(n_1, n_2, \ldots, n_r)$.} \end{corollary} \begin{proof} \cloze{Combine \cref{poly_ired_factors_gal_structure} and \cref{red_mod_p_thm}.} \end{proof} \end{flashcard} \begin{example*} $f(X) = X^4 - 3X + 1$. Modulo $2$, $\modred{f} = X^4 + X + 1 \in \radj \FF_2[X]$ is irreducible. Modulo $5$, $\modred{f} = (X + 1)(X^3 - X^2 + X + 1)$ (noting that the second factor is irreducible in $\radj \FF_5[X]$). Therefore $\Galpoly(f \galover \QQ)$ contains a $3$-cycle and a $4$-cycle. Hence $\Galpoly(f \galover \QQ) = S_4$. \end{example*} \vspace{-1em} Let $f \in \radj K[X]$ be a monic \gls{sep_poly} polynomial of degree $n$ with \gls{splitting_field} $L$ and roots $\alpha_1, \ldots, \alpha_n \in L$. Let \begin{align*} F(\tau_1, \ldots, \tau_n, X) &= \prod_{\sigma \in S_n} (X - (\alpha_1 T_{\sigma(1)} + \cdots + \alpha_n T_{\sigma(n)})) \\ &\in \radj K[T_1, \ldots, T_n, X] \end{align*} Indeed, the coefficients of this polynomial are in $L$, and are fixed by $\Gal(L \extendover K)$ hence are in $K$. We define an action $*$ of $S_n$ on $\radj K[T_1, \ldots, T_n, X]$ by permuting the $T_i$, i.e. \[ (\sigma * h) (T_1, \ldots, T_n, X) = h(T_{\sigma(1)}, \ldots, T_{\sigma(n)}, X) \] We note that $\sigma * F = F$ for all $\sigma \in S_n$. \begin{flashcard}[irred-factor-of-symm-prod-lemma] \begin{lemma} % Lemma 9.8 \label{irred_factor_of_symm_prod_lemma} Let $F_1 \in \radj K[T_1, \ldots, T_n, X]$ be an irreducible factor of $F$. Then \cloze{$\Galpoly(f \galover K) \subset S_n$ is conjugate to $\Stab(F_1) = \{\tau \in S_n \st \tau * F_1 = F_1\}$.} \end{lemma} \begin{proof} \cloze{Without loss of generality $F_1$ is monic in $X$. Replacing $F_1$ by $\tau * F_1$ for suitable $\tau \in S_n$ we may suppose it has a factor \[ X - (\alpha_1 T_1 + \cdots + \alpha_n T_n) .\] Then for each $\sigma \in G = \Galpoly(f \galover K)$, it had a factor \[ X - (\alpha_{\sigma(1)} T_1 + \cdots \alpha_{\sigma(n)} T_n) \] Now \[ \prod_{\sigma \in G} (X - (\alpha_{\sigma(1)} T_1 + \cdots + \alpha_{\sigma(n)} T_n)) \] has coefficients in $K$, and divides $F_1$, hence is equal to $F_1$ (sine $F_1$ irreducible and monic in $X$). For $\tau \in S_n$ we have \begin{align*} \tau * F_1 &= \prod_{\sigma \in G} (X - (\alpha_{\sigma(1)} T_{\tau(1)} + \cdots + \alpha_{\sigma(n)} T_{\tau(n)})) \\ &= \prod_{\sigma \in G} (X - (\alpha_{\sigma \tau^{-1}(1)} T_1 + \cdots + \alpha_{\sigma \tau^{-1}(n)} T_n)) \\ &= \prod_{\sigma \in G\tau^{-1}} (X - (\alpha_{\sigma(1)} T_1 + \cdots + \alpha_{\sigma(n)} T_n)) \end{align*} So $\tau * F_1 = F_1$ if and only if $G = G\tau^{-1}$, which happens if and only if $\tau \in G$.} \end{proof} \end{flashcard} \begin{proof}[Proof of \nameref{red_mod_p_thm} (non-examinable)] By the \nameref{symm_func_thm} the coefficients of $F$ are $\ZZ$-coefficient polynomials in the coefficients of $f$. So if $f \in \radj \ZZ[X]$ then $F \in \radj \ZZ[T_1, \ldots, T_n, X]$. Let $\modred{f} \in \radj \FF_p[X]$ and $\modred{F} \in \radj \FF_p[T_1, \ldots, T_n, X]$ be the polynomials obtained by reducing all coefficients modulo $p$. We may equally construct $\modred{F}$ from $\modred{f}$ in the same way we constructed $F$ from $f$. Write $F = F_1 F_2 \cdots F_s$, $F_i \in \radj \ZZ[T_1, \ldots, T_n, X]$ distrinct irreducibles (also irreducible in $\radj \QQ[T_1, \ldots, T_n, X]$). Let $\modred{F} = \phi_1 \phi_2 \cdots \phi_t$, $\phi_i \in \radj \FF_p[T_1, \ldots, T_n, X]$ distinct irreducibles. Without loss of generality $\phi_1 \mid \modred{F_1}$ (hence $\phi_1 \nmid \modred{F}_j$ for all $j > 1$). Then \[ \{\tau \in S_n \st \tau * \phi_1 = \phi_1\} \subset \{\tau \in S_n \st \tau * F_1 = F_1\} .\] \cref{irred_factor_of_symm_prod_lemma} shows that up to conjugacy, \[ \Galpoly(\modred{f} \galover \FF_p) \subset \Galpoly(f \galover \QQ). \qedhere \] \end{proof} \newpage \section{Cyclotomic and Kummer extensions} \glssymboldefn{mu_n}{$\mu_n$}{$\mu_n$} Let $K$ be a \gls{field}, and $n \ge 1$ an integer. We suppose $\characteristic K \nmid n$ (i.e. either $\characteristic K = 0$, or $\characteristic K = p > 0$ and $p \nmid n$). Let $L \extendover K$ be a \gls{splitting_field} of $f(X) = X^n - 1$. Since $f\fd(X) = nX^{n - 1}$ and $n \cdot 1_K \neq 0$ we have $\gcd(f, f\fd) = 1$ and so $f$ is \gls{sep_poly}. By \cref{classification_of_finite_galois_extensions}, $L \extendover K$ is \gls{galois}. Let $\mu_n = \{x \in L \st x^n = 1\}$ be the group of $n$-th roots of unity. This is a subgroup of $\mult{L}$ of order $n$ (since $f$ splits into distinct linear factors over $L$) and is cyclic by \cref{cyclic_mult_subgroup}. \begin{definition*} \glsnoundefn{prim_n_root}{primitive $n$-th root of unity}{primitive $n$-roots of unity} \glssymboldefn{zeta_n}{$\zeta_n$}{$\zeta_n$} $\zeta_n \in \mu_n$ is a \emph{primitive $n$-th root of unity} if it has order exactly $n$ in $\mult{L}$. \end{definition*} \begin{example*} If $K \subset \CC$ then we can take $\zeta_n = e^{2\pi i / n}$. \end{example*} \vspace{-1em} Then \[ \mu_n = \langle \zeta_n \rangle = \{1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n - 1}\} \] and \[ L = \fadj K(1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n - 1}) = \fadj K(\zeta_n) .\] \begin{definition*} \glsadjdefn{cycl_ex}{cyclotomic}{\gls{field_ex}} $\fadj K(\zeta_n) \extendover K$ is called a \emph{cyclotomic extension}. \end{definition*} \vspace{-1em} Next time: we show \[ \Gal(\fadj K(\zeta_n) \extendover K) \subset \mult{(\ZZ / n\ZZ)} .\] (with equality when $K = \QQ$).