%! TEX root = Galois.tex % vim: tw=50 % 11/11/2023 12PM \vspace{-2em} \begin{itemize} \item[] Let $f(X) = \prod_{i = 1}^4 (X - \alpha_i)$ be a monic quartic polynomial. Define \begin{align*} \beta_1 &= (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_4) \\ \beta_2 &= (\alpha_1 + \alpha_3)(\alpha_2 + \alpha_4) \\ \beta_3 &= (\alpha_1 + \alpha_4)(\alpha_2 + \alpha_3) \end{align*} \begin{definition*} \vspace{0.8em} \glsnoundefn{resolvent}{resolvent cubic}{N/A} The \emph{resolvent cubic} is \[ g(X) = \prod_{i = 1}^3 (X - \beta_i) .\] \end{definition*} \begin{theorem} % Thereom 9.3 \label{resolvent_facts} \vspace{0.8em} Let $f, g$ as above. \begin{enumerate}[(i)] \item If $f \in \radj K[X]$ then $g \in \radj K[X]$. \item If $f$ is \gls{sep_poly} then $g$ is \gls{sep_poly}. \item If (i) and (ii) hold then \[ \pi(\Galpoly(f \galover K)) = \Galpoly(g \galover K) \] In particular if $f \in \radj K[X]$ is irreducible then $\Galpoly(g \galover K)$ determines $\Galpoly(f \galover K)$ up to ambiguity between $C_4$ and $D_8$ when $\#\Galpoly(g \galover K) = 2$. \end{enumerate} \end{theorem} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item More generally each coefficient of $g$ is a symmetric polynomial in $\radj \ZZ[\beta_1, \beta_2, \beta_3]$, hence a symmetric polynomial in $\radj \ZZ[\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ and so by the \nameref{symm_func_thm}, is a $\ZZ$-coefficient polynomial in the coefficients of $f$. \item \begin{align*} \beta_1 - \beta_2 &= \alpha_1 \alpha_3 + \cancel{\alpha_1 \alpha_4} + \cancel{\alpha_2 \alpha_3} + \alpha_2 \alpha_4 - \alpha_1 \alpha_2 - \cancel{\alpha_1 \alpha_4} - \cancel{\alpha_2 \alpha_3} - \alpha_3 \alpha_4 \\ &= \alpha_1 \alpha_3 + \alpha_2 \alpha_4 - \alpha_1 \alpha_2 - \alpha_3 \alpha_4 \\ &= (\alpha_1 - \alpha_4)(\alpha_3 - \alpha_2) \end{align*} If $f$ \gls{sep_poly} then $\alpha_1, \ldots, \alpha_4$ are distinct, hence $\beta_1 \neq \beta_2$. Similar calculation shows $\beta_1, \beta_2, \beta_3$ are all distinct. Hence $g$ is \gls{sep_poly}. \item Let $M$ be a \gls{splitting_field} of $f$ over $K$. Let $\alpha_1, \ldots, \alpha_4 \in M$ be the roots of $f$. Then $L \defeq \fadj K(\beta_1, \beta_2, \beta_3) \subset M$ is a \gls{splitting_field} for $g$ over $K$. If an element of $\Gal(M \extendover K)$ permutes $\alpha_1, \ldots, \alpha_4$ according to $\sigma \in S_4$, then it restricts to an element of $\Gal(L \extendover K)$ permuting $\beta_1, \beta_2, \beta_3$ according to $\pi(\sigma) \in S_3$. In other words, there is a commutative diagram \begin{center} \begin{tikzcd} \Gal(M \extendover K) \ar[r, "\res"] \ar[d, "\iota_4"] & \Gal(L \extendover K) \ar[d, "\iota_3"] \\ S_4 \ar[r, "\pi"] & S_3 \end{tikzcd} \end{center} By \cref{ft_of_gal}(c), the map $\res : \Gal(M \extendover K) \to \Gal(L \extendover K)$ is surjective. Therefore $\pi(\Im \iota_4) = \Im \iota_3$. Therefore $\pi(\Galpoly(f \galover K)) = \Galpoly(g \galover K)$. \qedhere \end{enumerate} \end{proof} \begin{proposition} % Proposition 9.4 \vspace{0.8em} Let $f$ be a monic quartic polynomial with \gls{resolvent} $g$. Then \begin{enumerate}[(i)] \item $\Disc(f) = \Disc(g)$. \item If \[ f(X) = X^4 + pX^2 + qX + r \] then \[ g(X) = X^3 - 2pX^2 + (p^2 - 4r)X + q^2 \] \end{enumerate} \end{proposition} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item Exercise (see proof of \cref{resolvent_facts}(ii)). \item We must show \begin{align*} \beta_1 + \beta_2 + \beta_3 &= 2p \tag{1} \\ \beta_1 \beta_2 + \beta_2 \beta_3 &= p^2 - 4r \\ \beta_1 \beta_2 \beta_3 &= -q^2 \end{align*} We have $\beta_1 + \beta_2 + \beta_3 = 2 \sum_{i < j} \alpha_i \alpha_j = 2p$, which proves (1). Since $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0$, we have \[ \label{lec17_l144_eq} \begin{cases} \beta_1 = -(\alpha_1 + \alpha_2)^2 \\ \beta_2 = -(\alpha_1 + \alpha_3)^2 \\ \beta_3 = -(\alpha_1 + \alpha_4)^2 \end{cases} \tag{$*$} \] \[ (\alpha_1 + \alpha_2)(\alpha_1 + \alpha_3)(\alpha_1 + \alpha_4) = \alpha_1^2 \cancel{(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)} + \ob{\sum_{i < j < k} \alpha_i \alpha_j \alpha_k}^{=-q} \] Therefore $\beta_1 \beta_2 \beta_3 = -q^2$, which proves (3). (2) is left as an exercise. \end{enumerate} \end{proof} \begin{example*} \vspace{0.8em} $f(X) = X^4 - 4X^2 + 2$. Irreducible in $\QQ[X]$ by Eisenstein ($p = 2$) and Gauss' Lemma. $g(X) = X(X^2 + 8X + 8)$. \[ \Disc(f) = \Disc(g) = 8^2 \Disc(X^2 + 8X + 8) = 2^{11} \] \[ \Galpoly(g \galover \QQ) = C_2 \implies \Galpoly(f \galover \QQ) = C_4 \text{ or } D_8 .\] But $f(X) = (X^2 - 2 + \sqrt{2})(X^2 - 2 - \sqrt{2})$. Therefore $\Galpoly(f \galover \QQ) \cap A_4 = \Galpoly(f \galover \fadj\QQ(\sqrt{2}))$ is not a transitive subgroup of $S_4$. Therefore $\Galpoly(f \galover \QQ) \cong C_4$ (compare with \cref{example_6_6}). \end{example*} \vspace{-1em} Now we find a formula for the roots of a quartic polynomial. \begin{enumerate}[(i)] \item Replace $f(X)$ by $f(X + c)$ such that $f$ has no $X^3$ term ($\implies$ $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0$). \item Find the roots of $\beta_1, \beta_2, \beta_3$ of the \gls{resolvent} using the method of \cref{sec_4}. \end{enumerate} By \eqref{lec17_l144_eq} we have \[ \alpha_1 = \half (\sqrt{-\beta_1} + \sqrt{-\beta_2} + \sqrt{-\beta_3}) \] where we choose square roots such that $\sqrt{-\beta_1} \sqrt{-\beta_2} \sqrt{-\beta_3} = -q$. \end{itemize} Recall $\sigma \in S_n$ has cycle type $(n_1, \ldots, n_r)$ if when written as a product of disjoint cycles, these cycles have lengths $n_1, n_2, \ldots, n_r$. \begin{flashcard}[poly-irred-factors-galois-group-structure-lemma] \begin{lemma} % Lemma 9.5 \label{poly_ired_factors_gal_structure} Let $f \in \radj \FF_p[X]$ be a \gls{sep_poly} polynomial with irreducible factors of degrees $n_1, \ldots, n_r$ ($n = \deg f = \sum n_i$). Then \cloze{$\Galpoly(f \galover \FF_p) \subset S_n$ is generated by a single element of cycle type $(n_1, \ldots, n_r)$. In particualr, $\Galpoly(f \galover \FF_p)$ is cyclic of order $\lcm(n_1, \ldots, n_r)$.} \end{lemma} \begin{proof} \cloze{Let $L$ be a \gls{splitting_field} of $f$ over $\FF_p$. Let $\alpha_1, \ldots, \alpha_n$ be the roots of $f$ in $L$. Then \cref{Fpn_over_Fp_is_gal} implies that $G = \Gal(L \extendover \FF_p)$ is cyclic generated by Frobenius $\phi : x \mapsto x^p$. Write $f = \prod_i f_i$, where $f_i \in \radj \FF_p[X]$ is irreducible of degree $n_i$. Since $G$ permutes the roots of each $f_i$ transitively, the action of $\phi$ on the roots of $f_i$ is given by a single $n_i$ cycle.} \end{proof} \end{flashcard}