%! TEX root = Galois.tex % vim: tw=50 % 09/11/2023 12PM \newpage \section{The Galois Group of a Polynomial} \begin{flashcard}[galois-group-defn] \begin{definition*}[Galois group of a polynomial] \glssymboldefn{galois_group_poly}{Gal$(f / K)$}{Gal$(f / K)$} \cloze{ Let $f \in \radj K[X]$ be a \gls{sep_poly} of degree $n$. Let $L$ be a \gls{splitting_field} for $f$ over $K$. The action of $G = \Gal(L \extendover K)$ on the roots $\alpha_1, \ldots, \alpha_n$ of $f$ determines an injective group homomorphism $\iota : G \to S_n$. It's image is the \emph{Galois group of $f$ over $K$}, written $\Galpoly(f)$ or $\Galpoly(f \galover K)$. } \end{definition*} \end{flashcard} \begin{flashcard}[f-irred-iff-gal-transitive] \begin{lemma} % Lemma 9.1 \label{f_irred_iff_gal_transitive} Let $f \in \radj K[X]$ be a \gls{sep_poly}. Then \[ \cloze{\text{$f$ irreducible}} \iff \cloze{\text{$\Galpoly(f \galover K)$ is transitive}} \] \cloze{(Recall $H \subset S_n$ is transitive if $\forall i, j \in \{1, \ldots, n\}$, there exists $\sigma \in H$ such that $\sigma(i) = j$).} \end{lemma} \begin{proof} \phantom{} \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] \cloze{If $f = gh$, $g, h \in \radj K[X]$, $\deg g > 0$, $\deg h > 0$ then $\Galpoly(f \galover K)$ sends roots of $g$ to roots of $g$ (and not to roots of $h$), and so cannot act transitively on the roots of $f$.} \item[$\Leftarrow$] \cloze{Without loss of generality, $f$ is monic. Let $\alpha \in L$ be a root of $f$. Then $f$ is the \gls{min_poly} of $\alpha$ over $K$. Then by \cref{lec12_first_remark}, \[ \{\sigma(\alpha) : \sigma \in \Gal(L \extendover K)\} = \{\text{roots of $f$ in $L$}\} \] Therefore $\Gal(L \extendover K)$ acts transitively on $\alpha_1, \ldots, \alpha_n$. Therefore $\Galpoly(f \galover K) \subset S_n$ is a transitive subgroup.} \end{enumerate} \end{proof} \end{flashcard} \begin{remark*}[Alternative proof of $\Rightarrow$] By \cref{automorphisms_bound}, there exists \Kisom[K] $\fadj K(\alpha_i) \cong \fadj K(\alpha_j)$, $\alpha_i \mapsto \alpha_j$. This extends to an automorphis mof $L$ by \nameref{uniqueness_of_splitting_fields}. \end{remark*} \vspace{-1em} Let $f \in \radj K[X]$ be a monic \gls{sep_poly} polynomial with roots $\alpha_1, \ldots, \alpha_n$ in a \gls{splitting_field} $L$. Recall from \cref{sec_4}, \[ \Disc(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2 \] \begin{flashcard}[fixed-field-disc-lemma] \begin{lemma} % Lemma 9.2 \label{fixed_field_disc_lemma} \cloze{Assume $\characteristic K \neq 2$. Let $\Delta = \Disc(f)$. }The \gls{fixed_field} of $\Galpoly(f \galover K) \cap A_n$ is \cloze{$\fadj K(\sqrt{\Delta})$. In particular} \[ \cloze{\Galpoly(f \galover K) \subset A_n \iff \text{$\Delta$ is a square in $K$}} \] \end{lemma} \begin{proof} \cloze{The sign of a permutation $\pi \in S_n$ is defined so that (as an identiy in $\radj \ZZ[X_1, \ldots, X_n]$) we have \[ \prod_{i < j} (X_{\pi(i)} - X_{\pi(j)}) = \sign(\pi) \prod_{i < j} (X_i - X_j) \] We put $\delta = \prod_{i < j} (\alpha_i - \alpha_j)$ so that $\delta^2 = \Delta$. So if $\sigma \in G = \Galpoly(f \galover K) = \Gal(L \extendover K)$ then \[ \sigma(\delta) = \sign(\sigma) \delta .\] As $f$ is \gls{sep_poly} and $\characteristic K \neq 2$, $\delta \neq -\delta$. Therefore \begin{align*} G \cap A_n &= \{\sigma \in G \st \sigma(\sigma) = 1\} \\ &= \{\sigma \in G \st \sigma(\delta) = \delta\} \\ &= \Gal(L \extendover \fadj K(\delta)) \end{align*} Therefore $\fixedf L^{G \cap A_n} = \fadj K(\delta)$. In particular, \begin{align*} G \subset A_N &\iff G \cap A_n = G \\ &\iff \fadj K(\sqrt{\Delta}) = K \\ &\iff \text{$\Delta$ is a square in $K$} \qedhere \end{align*}} \end{proof} \end{flashcard} \begin{remark*} $G = \Galpoly(g \galover K) \subset S_n$ is really only defined up to conjugacy, since if we reorder $\alpha_1, \ldots, \alpha_n$ using $\sigma \in S_n$ then $G$ changes to $\sigma G\sigma^{-1}$. But we \emph{can} distinguish between \[ \langle (12), (34) \rangle \subset S_4 \qquad \text{and} \qquad \langle (12)(34), (13)(24) \rangle \subset S_4 \] even though both are isomorphic to $C_2 \times C_2$. \end{remark*} \vspace{-1em} What is $G \hookrightarrow S_n$ up to conjugacy? \begin{itemize} \item $n = 2$: The only transitive subgroup of $S_2$ is itself. \item $n = 3$: The transitive subgroups of $S_3$ are $S_3$ and $A_3 \cong C_3$. So if $f \in \radj K[X]$ is irreducible then $\Galpoly(f \galover K)$ is $A_3$ or $S_3$. By \cref{fixed_field_disc_lemma}, $\Galpoly(f \galover K) = A_3$ if and only if $\Disc(f)$ is a square in $K$. Taking $n = 3$ in \es[3]{2} gives \begin{flashcard}[cubic-disc-formula] \[ \Disc(X^3 + aX + b) = \cloze{-4a^3 - 27b^2} \] \end{flashcard} (LEARN THIS FORMULA). \begin{example*} \vspace{0.8em} $f(X) = X^3 - 3X + 1$ (see \cref{sec2} and \es{1}). \[ \Disc(f) = -4(-3)^3 - 27 = 81 = 9^2 \] Therefore $\Galpoly(f \galover \QQ)$ is $1$ or $A_3$. We checked in \cref{sec2} that $f$ is irreducible over $\QQ$, so therefore $\Galpoly(f \galover \QQ) = A_3$. \end{example*} \item $n = 4$: The transitive subgroups of $S_4$ are \[ S_4, A_4, D_8, C_4, V \cong C_2 \times C_2 \] $S_4$, $A_4$, $V$ are normal subgroups where \[ V = \{\id, (12)(34), (13)(24), (14)(23)\} \] There are 3 conjugate copies of each of $C_4$ and $D_8$. Let $S_4$ act on $V \setminus \{\id\}$ by conjugation since $g(12)(34)g^{-1} = (g(1)g(2))(g(3)g(4))$ it would be equivalent to let $S_4$ act on the set of ways of partitioning the set $\{1, 2, 3, 4\}$ into 2 subsets of size $2$. The corresponding permutation representation is a group homomorphism $\pi : S_4 \to S_3$. If $H = \{\sigma \in S_4 \st \sigma(1) = 1\} = \langle (234), (23) \rangle \subset S_4$ then $\pi|_H : H \to S_3$ is an isomorphism. So $\pi$ is surjective and $\#\ker\pi = 4$. $V$ abelian $\implies$ $V \subset \ker\pi$. Hence $V = \ker \pi$. If $G \subset S_4$ then applying the isomorphism theorem to $\pi|_G$ gives $G / G \cap V \cong \pi(G) \subset S_4$. \begin{center} \begin{tabular}{c|c} transitive subgroup $G \subset S_4$ & $\pi(G) \subset S_3$ \\ \hline $S_4$ & $S_3$ \\ $A_4$ & $A_3$ \\ \text{$C_4$ or $D_8$} & $C_2$ \\ $V$ & $1$ \end{tabular} \end{center} \end{itemize}