%! TEX root = Galois.tex % vim: tw=50 % 07/11/2023 12PM We generalise \nameref{galois_ex_trace_norm_formulae} to $L \extendover K$ \gls{sep_ex}. Let $\algclos{K}$ be an \gls{alg_closure} of $K$. Then \nameref{finite_sep_ex_tfae} implies that $\#\Hom_K(L, \algclos{K}) = \exdeg[L : K]$. \begin{flashcard}[finite-sep-ex-trace-norm-thm] \begin{theorem} % Theorem 7.6 Let $L \extendover K$ be a \gls{finite_ex} \gls{sep_ex} \gls{ex} of \gls{ex_deg} $d$. Let $\sigma_1, \ldots, \sigma_d$ be the \Kembeddingpl{K} $L \hookrightarrow \algclos{K}$. Let $\alpha \in L$. Then \[ \aTrace_{L \extendover K} (\alpha) = \cloze{\sum_{i = 1}^d \sigma_i(\alpha),} \qquad \aNorm_{L \extendover K}(\alpha) = \cloze{\prod_{i = 1}^d \sigma_i(\alpha)} .\] \end{theorem} \begin{proof} \cloze{ Let $f$ be the \gls{min_poly} of $\alpha$ over $K$. Let $\alpha_1, \ldots, \alpha_n$ be the roots of $f$ in $\algclos{K}$. By \nameref{automorphisms_bound}, \begin{align*} \Hom_K(\fadj K(\alpha), \algclos{K}) &\leftrightarrow \{\alpha_1, \ldots, \alpha_n\} \\ \sigma &\mapsto \sigma(\alpha) \end{align*} Since $L \extendover \fadj K(\alpha)$ is \gls{sep_ex}, each \Kembedding{K} $\fadj K(\alpha) \hookrightarrow \algclos{K}$ extends to an \gls{embedding} $L \hookrightarrow \algclos{K}$ in exactly $m = \exdeg[L : \fadj K(\alpha)]$ ways. Therefore \begin{align*} \aTrace_{L \extendover K}(\alpha) &= m \sum_{j = 1}^n \alpha_j = \sum_{i = 1}^d \sigma_i(\alpha) \\ \aNorm_{L \extendover K}(\alpha) &= \left( \prod_{j = 1}^n \alpha_j \right)^m = \prod_{i = 1}^d \sigma_i(\alpha) \end{align*} (the first equality in each line holds by \nameref{min_poly_norm_trace_lemma}, and the second equality in each line holds since $\#\{1 \le i \le d \st \sigma_i(\alpha) = \alpha_j\} = m$). } \end{proof} \end{flashcard} \newpage \section{Finite Fields} Fix $p$ a prime number. Recall $\FF_p = \ZZ / p\ZZ$. We describe all finite \glspl{field} of \gls{char} $p$ (these are necessarily \gls{finite_ex} \glspl{ex} of $\FF_p$) and their Galois theory. We will use \cref{finite_field_sizes_prop}, \cref{cyclic_mult_subgroup} and \cref{frob_hom_prop}, so it is worth revisiting these. \begin{note*} $\phi$ in \cref{frob_hom_prop} is an automorphism of $K$ (injective since a homomorphism of \glspl{field}, hence surjective since $|K| < \infty$). \end{note*} \begin{flashcard}[finite-field-existence-characterisation-thm] \begin{theorem} % Theorem 8.1 \label{finite_field_unique_existence_thm} Let $q = p^n$ for some $n \ge 1$. Then: \begin{enumerate}[(i)] \item \cloze{There exists a \gls{field} with $q$ elements.} \item \cloze{Any \gls{field} with $q$ elemenst is a \gls{splitting_field} of $X^q - X$ over $\FF_p$.} \end{enumerate} \cloze{ In particular, any two finite \glspl{field} with the same order are isomorphic (by \nameref{uniqueness_of_splitting_fields}).} \end{theorem} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item \cloze{Let $L$ be a \gls{splitting_field} of $f(x) = X^q - X$ over $\FF_p$. Let $K \subset L$ be the \gls{fixed_field} of $\phi^n : L \to L$ (note $\phi^n(x) = x^{q}$). Then \[ K = \{\alpha \in L \st \phi^n(\alpha) = \alpha\} = \{\alpha \in L \st f(\alpha) = 0\} \] Therefore $\#K \le \deg f = q$. But $f\fd(X) = -1$ so $\gcd(f, f\fd) = 1$ so $f$ is \gls{sep_poly} (by \cref{simple_root_if_fd_lemma}). Therefore $\#K = q$.} \item \cloze{Suppose $K$ is a \gls{field} with $\#K = q$. Then Lagrange's theorem (group theory) implies that $\alpha^{q - 1} = 1 ~\forall \alpha \in \mult{K}$, hence $\alpha^q = \alpha ~\forall \alpha \in K$. So \[ f(X) = X^q - X = \prod_{\alpha \in K} (X - \alpha) \] splits into linear factors over $K$, but clearly not over any proper subfield (since $f$ \gls{sep_poly} as mentioned in (i)). So $K$ is a \gls{splitting_field} for $f$ over $\FF_p$.} \end{enumerate} \end{proof} \end{flashcard} \begin{notation*} \glssymboldefn{finite_field}{$F_q$}{$F_q$} We write $\FF_q$ for any field with $q$ elements. By \cref{finite_field_unique_existence_thm}, any two such are isomorphic, although there is no canonical choice of isomorphism. \end{notation*} \begin{flashcard}[Fpn-over-Fp-is-Galois-thm] \begin{theorem} % Theorem 8.2 \label{Fpn_over_Fp_is_gal} $\qFF_{p^n} \extendover \FF_p$ is \cloze{\gls{galois} with $\Gal(\qFF_{p^n} \extendover \FF_p)$ cyclic of order $n$, generated by the \hyperref[frob_hom_prop]{Frobenius} $\phi : x \mapsto x^p$.} \end{theorem} \begin{proof} \cloze{Let $L = \qFF_{p^n}$. Let $G \subset \Aut(L \extendover \FF_p)$ be the subgroup generated by \hyperref[frob_hom_prop]{Frobenius}. Then \begin{align*} \# \fixedf L^G &= \# \fixedf L^\phi \\ &= \#\{\alpha \in L \st \alpha^p - \alpha = 0\} \\ &\le p &&\text{(\cref{roots_bound_lemma})} \end{align*} But $\FF_p \subset \fixedf L^G$, so $\fixedf L^G = \FF_p$. So \[ \FF_p \subset \fixedf L^{\Aut(L \extendover \FF_p)} \subset \fixedf L^G = \FF_p \] so we get $\FF_p = \fixedf L^{\Aut(L \extendover \FF_p)}$, i.e. $L \extendover \FF_p$ is \gls{galois}. Also, we get $\fixedf L^{\Aut(L \extendover \FF_p)} = \fixedf L^G$, which implies $\Aut(L \extendover \FF_p) = G$. Therefore \[ \Gal(L \extendover \FF_p) = G = \langle \phi \rangle \] and it has order $\exdeg[L : \FF_p] = n$.} \end{proof} \end{flashcard} \begin{flashcard}[any-finite-field-extension-galois-coro] \begin{corollary} % Corollary 8.3 Let $L \extendover K$ be any \gls{ex} of finite \glspl{field} with $\#K = q$. Then \cloze{$L \extendover K$ is \gls{galois} with $\Gal(L \extendover K)$ cyclic, generated by the $q$-power Frobenius $x \mapsto x^q$.} \end{corollary} \begin{proof} \cloze{ Let $L = \qFF_{p^n}$. We have $\FF_p \subset K \subset L$. By \cref{Fpn_over_Fp_is_gal}, $L \extendover \FF_p$ is \gls{galois} with \[ G = \Gal(L \extendover \FF_p) = \langle \phi \rangle \cong C_n \] where $\phi : x \mapsto x^p$. \nameref{ft_of_gal} gives that $L \extendover K$ is \gls{galois} and $H = \Gal(L \extendover K) \subset G$. Since $G = \langle \phi \rangle \cong C_n$ we have $H = \langle \phi^m \rangle$ for some $m \mid n$. Then \[ \label{lec15_l200_eq} \exdeg[K : \FF_p] = \frac{\exdeg[L : \FF_p]}{\exdeg[L : K]} = \frac{\#G}{\#H} = (G : H) = m \tag{$*$} \] Therefore $q = \#K = p^m$ and $\phi^m : x \mapsto x^q$. } \end{proof} \end{flashcard} \begin{flashcard}[Fpn-unique-subfield-order-pm-coro] \begin{corollary} % Corollary 8.4 $\qFF_{p^n}$ has a unique subfield of order $p^m$ for each $m \mid n$ and no others. \end{corollary} \begin{proof} \cloze{ We apply the \nameref{ft_of_gal}. The subgroups of $G = \Gal(\qFF_{p^n} \extendover \FF_p) = \langle \phi \rangle \cong C_n$ are the subgroups $H = \langle \phi^m \rangle$ for $m \mid n$ (and no others). If $K = \fixedf {\qFF_{p^n}}^H$ then $H = \Gal(\qFF_{p^n} \extendover K)$ and $\exdeg[K : \FF_p] = (G : H) = m$ (see \eqref{lec15_l200_eq}). Therefore $\#K = p^m$. } \end{proof} \end{flashcard} \begin{example*} \phantom{} \begin{center} \includegraphics[width=0.3\linewidth]{images/6268c66bd6d94d95.png} \end{center} All \glspl{ex} are \gls{galois} with cyclic \gls{galois} group of orders indicated. \end{example*}