%! TEX root = Galois.tex % vim: tw=50 % 04/11/2023 12PM \begin{example*} $\fadj \QQ(\sqrt[3]{2}) \extendover \QQ$ has \gls{gal_clos} $\fadj \QQ(\omega, \sqrt[3]{2}) / \QQ$ where $\omega = e^{2\pi i / 3}$. \end{example*} \newpage \section{Trace and Norm} Let $L \extendover K$ be a \gls{finite_ex} \gls{ex}, say $\exdeg [L : K] = n$. For $\alpha \in L$ the map \begin{align*} L &\stackrel{m_\alpha}{\longrightarrow} L \\ x &\longmapsto \alpha x \end{align*} is a $K$-linear endomorphism of $L$, hence has a trace and a determinant. \begin{flashcard}[trace-and-norm-defn] \begin{definition*}[Trace and norm] \glssymboldefn{trace_alpha}{Tr${}_{L / K}(\alpha)$}{Tr${}_{L / K}(\alpha)$} \glssymboldefn{norm_alpha}{$N_{L / K}$}{$N_{L / K}(\alpha)$} \cloze{ The \emph{trace} and \emph{norm} of $\alpha$ are \[ \Trace_{L \extendover K}(\alpha) = \Trace(m_\alpha) \qquad N_{L \extendover K}(\alpha) = \det(m_\alpha) \] Concretely, if $L$ has $K$-basis $v_1, \ldots, v_n$ and $A = (a_{ij})$ is the unique $n \times n$ matrix with entries in $K$ such that \[ \alpha(v_j) = \sum_{i = 1}^n a_{ij} v_i \qquad \text{and} \qquad \forall 1 \le j \le n \] then \[ \Trace_{L \extendover K} = \Trace A \qquad \text{and} \qquad N_{L \extendover K}(\alpha) = \det(A) \] } \end{definition*} \end{flashcard} \begin{example*} $K = \QQ$, $L = \fadj \QQ(\sqrt{d})$, $d \in \ZZ$ not a square. If $\alpha = x + y\sqrt{d}$, $x, y \in \QQ$, then (since $L$ has $K$-basis $1, \sqrt{d}$): \begin{align*} \aTrace_{\fadj \QQ(\sqrt{d}) \extendover \QQ}(\alpha) &= \Trace \begin{pmatrix} x & dy \\ y & x \end{pmatrix} = 2x \\ \aNorm_{\fadj \QQ(\sqrt{d}) \extendover \QQ}(\alpha) &= \det \begin{pmatrix} x & dy \\ y & x \end{pmatrix} = x^2 - dy^2 \end{align*} \end{example*} \begin{flashcard}[trace-norm-properties-lemma] \begin{lemma} % Lemma 7.1 \phantom{} \begin{enumerate}[(i)] \item $\aTrace_{L \extendover K} : L \to K$ is a $K$-linear map. \item \cloze{$\aNorm_{L \extendover K} : L \to K$ is multiplicative, i.e. \[ \aNorm_{L \extendover K} (\alpha \beta) = \aNorm_{L \extendover K}(\alpha) \aNorm_{L \extendover K}(\beta) \qquad \forall \alpha, \beta \in L \]} \item \cloze{If $\alpha \in K$ tehn \begin{align*} \aTrace_{L \extendover K} &= \exdeg [L : K] \alpha \\ \aNorm_{L \extendover K}(\alpha) &= \alpha^{\exdeg[L : K]} \end{align*}} \item \cloze{If $\alpha \in L$ then \[ \aNorm_{L \extendover K}(\alpha) = 0 \iff \alpha = 0 .\]} \end{enumerate} \end{lemma} \begin{proof} \cloze{ (i) and (ii) follow from the corrsponding statements for traces and determinants. For (iii), if $\alpha \in K$ then $m_\alpha$ is represented by \[ \begin{pmatrix} \alpha & 0 & \cdots & 0 \\ 0 & \alpha & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha \end{pmatrix} \] which has trace and determinant as indicated. For (iv), note \[ \aNorm_{L \extendover K}(\alpha) \neq 0 \iff \text{$m_\alpha$ is invertible} \iff \alpha \neq 0 \] } \end{proof} \end{flashcard} \begin{flashcard}[triple-field-ex-trace-norm-calculation-lemma] \begin{lemma} % Lemma 7.2 \label{trace_norm_calculation_lemma} Let $M \extendover L \extendover K$ be a \gls{field_ex} and $\alpha \in L$. Then \begin{align*} \aTrace_{M \extendover K}(\alpha) &= \cloze{\exdeg [M : L] \Trace_{L \extendover K}(\alpha)} \\ \aNorm_{M \extendover K}(\alpha) &= \cloze{\aNorm_{L \extendover K}(\alpha)^{\exdeg [M : L]}} \end{align*} \end{lemma} \begin{proof} \cloze{ If $A$ represents $m_\alpha$ with respect to some basis for $L \extendover K$ and $B$ represents $m_\alpha$ with respect to some basis for $M \extendover K$ picked by following the proof of the \nameref{tower_law}, then \[ B = \begin{pmatrix} A & 0 & \cdots & 0 \\ 0 & A & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A \end{pmatrix} \] where $A$ is $\exdeg [L : K] \times \exdeg [L : K]$ and $B$ is $\exdeg [M : K] \times \exdeg [M : K]$. Then \[ \Trace(B) = \exdeg [M : L] \Trace(A) \qquad \text{and} \qquad \det(B) = \det(A)^{\exdeg[M : L]}. \qedhere \] } \end{proof} \end{flashcard} \begin{flashcard}[min-poly-norm-trace-lemma] \begin{theorem} % Theorem 7.3 \label{min_poly_norm_trace_lemma} Let $\exdeg [L : K] < \infty$. Let $\alpha \in L$. Let $f$ be the \gls{min_poly} of $\alpha$ over $K$, say \[ f(X) = X^n + a_{n - 1} X^{n - 1} + \cdots + a_1 X + a_0 \qquad a_i \in K \] Then \begin{align*} \aTrace_{L \extendover K}(\alpha) &= \cloze{-ma_{n - 1}} \\ \aNorm_{L \extendover K}(\alpha) &= \cloze{((-1)^n a_0)^m} \end{align*} where $m = [L : L(\alpha)]$. \end{theorem} \begin{proof} \cloze{ By \cref{trace_norm_calculation_lemma} without loss of generality $L = \fadj K(\alpha)$, i.e. $m = 1$. If $A$ represents $m_\alpha$ with respect to basis $1, \alpha, \alpha^2, \ldots, \alpha^{n - 1}$ then \[ A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -a_{n - 2} \\ 0 & 0 & 0 & \cdots & 1 & -a_{n - 1} \\ \end{pmatrix}\] Therefore \begin{align*} \aTrace_{L \extendover K}(\alpha) &= \Trace(A) = -a_{n - 1} \\ \aNorm_{L \extendover K}(\alpha) &= \det(A) = (-1)^n a_0 \qedhere \end{align*} } \end{proof} \end{flashcard} \begin{example*} $K = \QQ$, $L = \fadj \QQ(\sqrt{d})$ \begin{align*} \alpha = x + y\sqrt{d} &\implies (\alpha - x)^2 = dy^2 \\ &\implies \text{$\alpha$ is a root of } T^2 - \ub{2xT}_{\text{trace}} + \ub{x^2 - dy^2}_{\text{norm}} = 0 \end{align*} \end{example*} \begin{flashcard}[transitivity-of-trace-and-norm-thm] \begin{theorem}[Transitivity of trace and norm] % Theorem 7.4 \label{trace_norm_transitivity} Let $M \extendover L \extendover K$ be a \gls{finite_ex} \gls{ex} and $\alpha \in M$. Then \begin{align*} \aTrace_{M \extendover K}(\alpha) &= \cloze{\aTrace_{L \extendover K}(\aTrace_{M \extendover L}(\alpha))} \\ \aNorm_{M \extendover K}(\alpha) &= \cloze{\aNorm_{L \extendover K}(\aNorm_{M \extendover L}(\alpha))} \end{align*} \end{theorem} \end{flashcard} \begin{proof}[Proof (sketch -- non-examinable)] By \cref{trace_norm_calculation_lemma}, without loss of generality $M = \fadj L(\alpha)$. Let $f$ be the \gls{min_poly} of $\alpha$ over $L$, say \[ f(X) = X^n + a_{n - 1} X^{n - 1} + \cdots + a_1 X + a_0, \qquad a_i \in L \] $L \extendover K$ has basis $v_1, \ldots, v_m$ and $M \extendover L$ has basis $1, \alpha, \alpha^2, \ldots, \alpha^{n - 1}$. If $A_i$ represents $m_{a_i}$ with respect to $v_1, \ldots, v_m$ and $B$ represents $m_\alpha$ with respect to $(v_i \alpha^{j - 1})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$ then \[ B = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -A_0 \\ I & 0 & 0 & \cdots & 0 & -A_1 \\ 0 & I & 0 & \cdots & 0 & -A_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -A_{n - 2} \\ 0 & 0 & 0 & \cdots & I & -A_{n - 1} \\ \end{pmatrix} \] ($A_i$ is $m \times m$, $B$ is $mn \times mn$). We compute \begin{align*} \aTrace_{M \extendover K} &\stackrel{\text{defn}}{=} \Trace(B) \\ &= -\Trace(A_{n - 1}) \\ &\stackrel{\text{defn}}{=} \aTrace_{L \extendover K}(-a_{n - 1}) \\ &\stackrel{\text{\cref{min_poly_norm_trace_lemma}}}{=} \aTrace_{L \extendover K} (\aTrace_{M \extendover L}(\alpha)) \\ \aNorm_{M \extendover K}(\alpha) &\stackrel{\text{defn}}{=} \det(B) \\ &\stackrel{\text{exercise}}{=} (-1)^{mn} \det(A_0) \\ &\stackrel{\text{defn}}{=} \aNorm_{L \extendover K} ((-1)^n a_0) \\ &\stackrel{\text{\cref{min_poly_norm_trace_lemma}}}{=} \aNorm_{L \extendover K} (\aNorm_{M \extendover L}(\alpha)) \qedhere \end{align*} \end{proof} \begin{flashcard}[thm-75] \begin{theorem} % Theorem 7.5 \label{galois_ex_trace_norm_formulae} Let $L \extendover K$ be a \gls{finite_ex} \gls{galois} \gls{ex} with $G = \Gal(L \extendover K)$. Let $\alpha \in L$. Then \[ \aTrace_{L \extendover K}(\alpha) = \cloze{\sum_{\sigma \in G} \sigma(\alpha)} \qquad \text{and} \qquad \aNorm_{L \extendover K}(\alpha) = \cloze{\prod_{\sigma \in G} \sigma(\alpha)} \] \end{theorem} \begin{proof} \cloze{ By \cref{lec12_first_remark}, the \gls{min_poly} of $\alpha$ over $K$ is \[ f(X) = \prod_{i = 1}^n (X - \alpha_i) \] where $\orb_G(\alpha) = \{\alpha_1, \ldots, \alpha_n\}$. Let $m = \exdeg [L : \fadj K(\alpha)] = \#\Stab_G(\alpha)$. Now \begin{align*} \aTrace_{L \extendover K}(\alpha) &\stackrel{\text{\cref{min_poly_norm_trace_lemma}}}{=} m \sum_{i = 1}^n \alpha_i = \sum_{\sigma \in G} \sigma(\alpha) \\ \aNorm_{L \extendover K}(\alpha) &\stackrel{\text{\cref{min_poly_norm_trace_lemma}}}{=} \left( \prod_{i = 1}^n \alpha)i \right)^m = \prod_{\sigma \in G} \sigma(\alpha) \end{align*} where the final equality on each line follows by the proof of Orbit-Stabiliser Theorem. } \end{proof} \end{flashcard} \begin{example*} $K = \QQ$, $L = \fadj \QQ(\sqrt{d})$. $\Gal(L \extendover K) = \{1, \sigma\}$, $\sigma(\sqrt{d}) = -\sqrt{d}$. Then for $\alpha = x + y\sqrt{d}$, $x, y \in \QQ$, \begin{align*} \aTrace_{L \extendover K}(\alpha) &= (x + y\sqrt{d}) = (x + y\sqrt{d}) + (x - y\sqrt{d}) = 2x \\ \aNorm_{L \extendover K}(\alpha) &= (x + y\sqrt{d})(x - y\sqrt{d}) = x^2 - dy^2 \end{align*} We generalise \cref{galois_ex_trace_norm_formulae} to $L \extendover K$ \gls{sep_ex}. \end{example*}