%! TEX root = Galois.tex % vim: tw=50 % 02/11/2023 14PM \begin{example} % Example 6.6 \label{example_6_6} Let $K = \fadj \QQ(\alpha)$ where $\alpha = \sqrt{2 + \sqrt{2}}$. Then $(\alpha^2 - 2)^2 = 2$, so $\alpha$ is a root of $f(X) = X^4 - 4X^2 + 2$. This is irreducible in $\radj \ZZ[X]$ by Eisenstein's criterion with $p = 2$. Therefore it is irreducible in $\radj \QQ[X]$ by Gauss' Lemma, so $\exdeg [K : \QQ] = 4$. Now $(2 + \sqrt{2}) (2 - \sqrt{2}) = 2$, so $f$ has roots $\pm \alpha, \pm \frac{\sqrt{2}}{\alpha}$ (note $\sqrt{2} = \alpha^2 - 2$). Therefore $K$ is a \gls{splitting_field} for $f$ over $\QQ$, so $K \extendover \QQ$ is \gls{norm_ex} hence \gls{galois} (since \glsref[sep_ex]{separability} is automatic in $\characteristic 0$). If $\sigma \in \Gal(K \extendover \QQ)$ then it is uniquely determined by $\sigma(\alpha)$. But $\sigma(\alpha) \in \{\pm \alpha, \pm \sqrt{2} / \alpha\}$, and $\#\Gal(K \extendover \QQ) = \exdeg [K : \QQ] = 4$, so all possibilities must occur (could see this more directly using \cref{automorphisms_bound}). We fix $\sigma \in \Gal(K \extendover \QQ)$ with $\sigma(\alpha) = \frac{\sqrt{2}}{\alpha}$, hence $\sigma(\alpha^2) = \frac{2}{\alpha^2}$, so $\sigma(2 + \sqrt{2}) = 2 - \sqrt{2}$, so $\sigma(\sqrt{2}) = -\sqrt{2}$. Therefore \[ \sigma^2(\alpha) = \sigma \left( \frac{\sqrt{2}}{\alpha} \right) = -\frac{\sqrt{2}}{\left( \frac{\sqrt{2}}{\alpha} \right)} = -\alpha \] Therefore $\sigma^2 \neq \id$, but $\sigma^4 = \id$. So \[ \Gal(K \extendover \QQ) \cong C_4 \] \begin{center} \includegraphics[width=0.6\linewidth]{images/0952bc9405d640b4.png} \end{center} \end{example} \begin{flashcard}[composite-subfield-defn] \begin{definition*}[Composite subfield] \glsadjdefn{comp_field}{composite}{\gls{field}} \glssymboldefn{comp_field}{$L_1 L_2$}{$L_1 L_2$} \cloze{ Let $L_1$, $L_2$ be sub\glspl{field} of a \gls{field} $M$. The \emph{composite} $L_1 L_2$ is the smallest sub\gls{field} of $M$ to contain both $L_1$ and $L_2$. (This exists since the intersection of any collection of sub\glspl{field} is a sub\gls{field}). } \end{definition*} \end{flashcard} \begin{flashcard}[composite-subfield-galois-thm] \begin{theorem} % Theorem 6.7 \label{comp_subf_gal_thm} Let $\exdeg [M : k] < \infty$ and let $L_1$, $L_2$ be intermediate \glspl{field} i.e. $K \subset L_i \subset M$ for $i = 1, 2$. \begin{enumerate}[(i)] \item \cloze{If $L_1 \extendover K$ is \gls{galois} then $\compfield{L_1}{L_2} \extendover L_2$ is \gls{galois} and there is an injective group homomorphism \[ \Gal(\compfield{L_1}{L_2} \extendover L_2) \hookrightarrow \Gal(L_1 \extendover K) \] This is surjective if and only if $L_1 \cap L_2 = K$. \begin{center} \includegraphics[width=0.6\linewidth]{images/fd6a9a0d2b084ef1.png} \end{center} } \item \cloze{If $L_1 \extendover K$ and $L_2 \extendover K$ are both \gls{galois} then $\compfield{L_1}{L_2} \extendover K$ is \gls{galois} and there is an injective group homomorphism \[ \Gal(\compfield{L_1}{L_2} \extendover K) \hookrightarrow \Gal(L_1 \extendover K) \times \Gal(L_1 \extendover K) \] This is surjective if and only if $L_1 \cap L_2 = K$.} \end{enumerate} \end{theorem} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item \cloze{$L_1 \extendover K$ \gls{galois} $\implies$ $L_1$ is the \gls{splitting_field} of some \gls{sep_poly} polynomial $f \in \radj K[X]$. Then $\compfield{L_1}{L_2}$ is a \gls{splitting_field} for $f$ over $L_2$. Therefore $\compfield{L_1}{L_2} \extendover L_2$ is \gls{galois}. If $\sigma \in \Gal(\compfield{L_1}{L_2} \extendover L_2)$, then $\sigma|_K = \id$ and since $L_1 \extendover K$ is \gls{norm_ex} we have $\sigma(L_1) \subset L_1$. We consider the group homomorphism \begin{align*} \Gal(\compfield{L_1}{L_2} \extendover L_2) &\stackrel{\operatorname{res}}{\longrightarrow} \Gal(L_1 \extendover K) \\ \sigma &\longmapsto \sigma|_{L_1} \end{align*} It is injective since if $\sigma|_{L_1} = \id$ then $\sigma$ acts trivially on both $L_1$ and $L_2$ and hence on $\compfield{L_1}{L_2}$. Now suppose $L_1 \cap L_2 = K$. Then $L_1 \extendover K$ is \gls{finite_ex} and \gls{sep_ex}. So by \nameref{prim_el_thm}, $L_1 = \fadj K(\alpha)$ for some $\alpha \in L_1$. Let $f \in \radj K[X]$ be the \gls{min_poly} of $\alpha$ over $K$. Suppose $f = gh$ for some $g, h \in \radj L_2[X]$, $\deg g, \deg h > 0$. Then $f$ splits into linear factors over $L_1$, so $g$ and $h$ have coefficients in $L_1 \cap L_2 = K$, which contradicts the fact that $f$ is irreducible over $K$. Therefore $f$ is irreducible in $\radj L_2[X]$. Therefore \[ \exdeg [L_1 : K] = \deg f = \exdeg [L_1 L_2 : L_2] \] The map $\operatorname{res}$ is therefore an isomorphism. Conversely, if $\Im(\operatorname{res}) \subset \Gal(L_1 \extendover L_1 \cap L_2) \subset \Gal(L_1 \extendover K)$. So if $\operatorname{res}$ is surjective then $L_1 \cap L_2 = K$.} \item \cloze{$L_i \extendover K$ \gls{galois} $\implies$ $L_i$ is a \gls{splitting_field} of some \gls{sep_poly} polynomial $f_i \in \radj K[X]$. Then $\compfield{L_1}{L_2}$ is the \gls{splitting_field} of the \gls{sep_poly} $\lcm(f_1, f_2)$. Therefore $\compfield{L_1}{L_2} \extendover K$ is \gls{galois}. \begin{align*} \text{It is surjective} &\iff \exdeg[\compfield{L_1}{L_2} : K] = \exdeg [L_1 : k] \exdeg[L_2 : K] \\ &\iff [\compfield{L_1}{L_2} : L_2] \cancel{\exdeg[L_2 : K]} = \exdeg [L_1 : K] \cancel{[L_2 : K]} \\ &\stackrel{\text{(i)}}{\iff} L_1 \cap L_2 = K \qedhere \end{align*} } \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[galois-closure-existence-thm] \begin{theorem} \glsnoundefn{gal_clos}{Galois closure}{Galois closures} Let $L \extendover K$ be \gls{finite_ex} and \gls{sep_ex}. Then there exists a \gls{finite_ex} \gls{ex} $M \extendover L$ such that \begin{enumerate}[(i)] \item \cloze{$M \extendover K$ is \gls{galois}.} \item \cloze{If $L \subset M' \subset M$ and $M' \extendover K$ is \gls{galois} then $M' = M$.} \end{enumerate} We say $M \extendover K$ is a \emph{Galois closure} of $L \extendover K$. \end{theorem} \begin{proof} \cloze{ By \nameref{prim_el_thm}, $L = \fadj K(\alpha)$ for some $\alpha \in L$. Let $f$ be the \gls{min_poly} of $\alpha$ over $K$. Then $L \extendover K$ \gls{sep_ex} implies $f$ is \gls{sep_poly}. Let $M$ be a \gls{splitting_field} for $f$ over $L$. Since $L = \fadj K(\alpha)$ where $\alpha$ is a root of $f$, it follows that $M$ is a \gls{splitting_field} of $f$ over $K$. Now \cref{classification_of_finite_galois_extensions} implies that $M \extendover K$ is \gls{galois}. Let $M'$ as (ii). As $\alpha \in M'$ and $M' \extendover K$ is \gls{norm_ex}, $f$ splits into linear factors over $M'$. Hence $M' = M$. } \end{proof} \end{flashcard}